
Efficient Particle-Mesh Spreading on GPUs

*Xiangyu Guo, †Xing Liu, *Peng Xu, *Zhihui Du and †Edmond Chow
*Tsinghua National Laboratory for Information Science and Technology

Department of Computer Science and Technology, Tsinghua University, 100084, Beijing, China
E-mail: {csgxy123,bly930725}@gmail.com, duzh@tsinghua.edu.cn

†School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
Email: xing.liu@gatech.edu, echow@cc.gatech.edu

Abstract—The particle-mesh spreading operation maps a
value at an arbitrary particle position to contributions at
regular positions on a mesh. This operation is often used when
a calculation involving irregular positions is to be performed
in Fourier space. We study several approaches for particle-
mesh spreading on GPUs. A central concern is the use of
atomic operations. We are also concerned with the case where
spreading is performed multiple times using the same particle
configuration, which opens the possibility of preprocessing to
accelerate the overall computation time. Experimental tests
show which algorithms are best under which circumstances.

Keywords-particle-mesh; spreading; interpolation; sparse
matrices; GPU; warp shuffle

I. INTRODUCTION

Many scientific applications involve both a set of parti-
cles that can reside at arbitrary locations in space, and a
Cartesian mesh with regularly-spaced mesh points. Given
a set of values, such as velocities, on the mesh points,
it may be desired to find the interpolated values at the
arbitrary particle locations. This is called the particle-mesh
interpolation operation. Mesh points nearby the particle are
used to interpolate the value of the quantity at that particle.
The inverse operation takes values at particle positions and
contributes them to values at nearby mesh points. This is
called the particle-mesh spreading operation. The topic of
this paper is particle-mesh spreading. The operation is a
key step in the non-equispaced fast Fourier transform [1],
[2], with applications including tomography [3], magnetic
resonance imaging [4] and ultrasound [5]. Particle-mesh
spreading is also used in the particle-mesh Ewald summation
(PME) method [6], widely used in molecular dynamics [7]
and other types of simulations [8], [9] to evaluate long-range
interactions between particles.

In various particle-mesh applications, given quantities
located at particle positions, such as velocities, forces or
charges, are mapped onto a 3D regular mesh. The spreading
contributes to a p× p× p region of the mesh roughly
centered at the particle. The value of p is related to the order
of the (inverse) interpolation function. Figure 1 illustrates the
particle-mesh spreading of two particles onto a 2D mesh
using p = 4.

While both particle-mesh interpolation and spreading are
important, we focus on the latter because it is much more
challenging to obtain high performance for the spreading
operation. The reason why these operations have very dif-
ferent performance characteristics is because data structures

Figure 1: Particle-mesh spreading onto a 2D mesh with p = 4.
The solid green circle and red triangle represent two particles. The
mesh points receiving contributions from these particles are shown
with green circles and red triangles, respectively.

are usually particle based rather than mesh based. This is due
to the fact that it is easy to determine the neighboring mesh
points of a particle, but not easy to efficiently determine
the neighboring particles of a mesh point, especially when
particles can move. For the spreading operation, a natural
parallelization across particles means that the mesh variables
are shared, and locking/waiting is needed to control access to
these variables. For the interpolation operation, the quantity
at each particle is simply computed by reading the values
at nearby mesh points. This paper focuses on the particle-
mesh spreading operation on GPUs, where large numbers of
threads may be contending for writes on mesh variables.

The simple method of parallelizing particle-mesh spread-
ing on GPUs is to use one thread to perform the spreading
operation for each particle. As mentioned, this requires
using expensive atomic operations as multiple threads might
attempt to update the same mesh location simultaneously.
Additional challenges arise from the sparse and irregular
nature of spreading, making it hard to achieve load balance
and coalesced memory access, leading to poor performance
on GPU hardware.

Previous research on particle-mesh spreading on GPUs
attempt to enhance coalesced memory access and partially
avoid the use of atomic operations [10], [11]. In these
studies, a preprocessing step is used to create a mesh based
data structure. Each mesh point can store a single particle
[10] or a list of particles [11]. No atomic operations are
needed to perform the actual spreading operation because a
single thread sums the contributions for a mesh point using



the mesh based data structure.
A number of issues can be raised with the above mesh

based approach. Performance is highly dependent on the
number of particles per grid point. (The relationship between
the number of particles and the number of grid points is
chosen by balancing accuracy and cost.) For fewer than 1
particle per grid point on average, the mesh based approach
may be inefficient because of the large number of mesh
points not associated with particles. Also, while avoiding
atomic operations is a good optimization guideline, on recent
GPU microarchitectures, e. g., the Kepler GK110, the atomic
operation throughput has been substantially improved, mak-
ing particle based approaches more competitive.

In this paper, we are particularly interested in a new use
case for particle-mesh spreading, making it worthwhile to
reinvestigate these algorithms. In traditional uses of particle-
mesh spreading, the operation is performed once for a given
configuration of particles, where a configuration is a set
of particle locations. The new use case is to perform the
spreading operation multiple times for the same particle con-
figuration. This is necessary when the spreading operation is
performed inside an iterative method, for example, inside the
Lanczos algorithm, to compute Brownian displacements in
Brownian dynamics simulations for the given particle con-
figuration [9]. This use case means that it may be profitable
to perform some preprocessing, such as construction of mesh
based data structures, to speed up the overall computation.

The main contribution of this paper is two-fold: 1) propose
a new algorithm for computing a mesh based data structure
on GPUs that is useful when the spreading operation is
performed multiple times, and 2) propose a technique of
using GPU warp shuffle operations to optimize the spreading
operation with the mesh based structure. It is unlikely that
one single spreading method achieves the best performance
for all applications, with different densities of particles
relative to mesh points. To fully understand when to use
what algorithms, we compare several spreading algorithms
using well-selected test cases. For example, we will show
that particle based approaches are now very fast on GPUs,
given improvements in the speed of atomic operations.

II. CRITIQUE OF EXISTING APPROACHES

A. Particle Based Approach

The simple particle based approach assigns one thread
per particle to perform the spreading operations. Because
multiple threads working on nearby particles may need to
update the same mesh points concurrently, the use of atomic
operations is generally necessary. While this approach may
work well on CPUs, it is traditionally thought to be ineffi-
cient on GPUs where atomic operations are relatively more
expensive.

A major advantage of the particle based approach is that it
only needs a simple data structure, consisting of the list of
particles and their coordinates. The (inverse) interpolation
coefficients are computed “on-the-fly” using the particle
coordinates.

B. Mesh Based Approach

The mesh based approach, in contrast to the particle
based approach, assigns threads to mesh points. This is the

approach in the clever work of Harvey and Fabritiis [10]
on NVIDIA’s Tesla microarchitecture. The basic idea is to
use a “gather” for each mesh point rather than a “spread”
for each particle. The algorithm consists of three steps. In
the first step, each particle is placed at the nearest mesh
point. Atomic operations are still needed in this step, but
they are much fewer than in the particle based approach
(by a factor of p3 because particles rather than spreading
contributions are collected at the mesh points). Each mesh
point can hold at most one particle, so any additional
particles are placed on an overflow list. In the second step,
the actual spreading operation is performed at each mesh
point by gathering contributions from particles placed in the
surrounding p3 mesh points. Since each thread only updates
one mesh point, the use of atomic operations is not needed
in this step. As designed, memory access is coalesced in
this step as adjacent threads update adjacent mesh points.
In the third step, particles on the overflow list are processed
using the particle based approach. This algorithm follows the
paradigm of dividing the computation into a regular part and
an irregular part. The regular part can be computed quickly
on GPU hardware and hopefully dominates the irregular
part. In this paper, we refer to this specific mesh based
algorithm as the “Gather algorithm.”

When the number of particles is smaller than the num-
ber of mesh points, the Gather algorithm has much more
memory transactions than the particle based approach. This
may be an acceptable cost if it is lower than the penalty
of using atomic operations. This was the case for the Tesla
microarchitecture used by Harvey and Fabritiis [10], but on
NVIDIA’s Kepler microarchitecture where atomic operations
can be as fast as global memory load operations, the extra
memory transactions may outweigh the gain of avoiding
atomic operations.

Another potential disadvantage of the Gather algorithm
is that the interpolation weights must be computed multiple
times, once for every particle contributing to a mesh point,
rather than simply once for every particle in the particle
based approach. This is because the interpolation weights
for a particle depends on a particle’s position. In essence,
the interpolation weights are computed p3 times rather than
once. In this paper, we use cardinal B-spline interpolation
(used in the smooth PME method [12]). For high order B-
spline interpolation, e.g., p > 7, the interpolation weights
are often computed via a recursive process, making this cost
significant.

We note that when the Gather algorithm for spreading
must be performed many times for the same particle config-
uration, the result of the first placement step of the Gather
algorithm can be saved and reused. In this paper, we have
implemented and optimized the Gather algorithm in order
to study its performance for various test cases.

C. Multicoloring Approach
In our previous work on Intel Xeon Phi, we parallelized

the spreading operation by using a particle based approach
that does not need atomic operations [9]. Multicoloring
is used to partition the particles into sets called “colors.”
Spreading is performed in stages, each corresponding to a
color. In each stage, a thread is assigned a subset of the



particles of the current color such that each thread can update
mesh locations without conflict from other threads. This
algorithm, however, is not appropriate for GPUs because
of limited parallelism, due to the fact that each thread must
be assigned the spreading operation for many particles. In
essence, the particles assigned to a thread must be processed
sequentially, otherwise conflicts would occur. We will not
discuss the multicoloring approach further in this paper.

III. PROPOSED MESH BASED APPROACHES

A. Relation to Sparse Matrix Techniques

When the spreading operation is performed multiple times
for the same particle configuration, it may be worthwhile to
separately consider a preprocessing step and a spreading step
such that the spreading step is as fast as possible, and the cost
of the preprocessing step can be amortized over the multiple
spreading operations. To avoid needing atomic operations in
the spreading step, the preprocessing step generally needs to
compute a mesh based data structure. The mesh based data
structure computed by the Gather algorithm, however, has
two main issues: 1) it requires performing gather operations
on every mesh point even for mesh points that do not have
particles spreading onto them, and 2) it requires recomputing
the interpolation coefficients many times.

In order to make the spreading step as fast as possible, it is
tempting to use a different mesh based data structure where
the interpolation coefficients are stored and not recomputed.
This addresses the second problem above, but introduces
the drawback that DRAM reads would be needed for the
interpolation coefficients. Although these reads can be co-
alesced, the tradeoff between storage and recomputation of
interpolation coefficients must be studied. To address the first
problem above, we can explicitly store a list of contributions
at each mesh point. This also avoids the need for an overflow
list in the Gather algorithm.

The above ideas can be implemented using a sparse
matrix. Each row of the sparse matrix is stored contiguously,
and the elements in a row represent the interpolation weights
for a given mesh point. Applying the spreading opera-
tion consists of performing a sparse matrix-vector product
(SpMV), where the vector is the quantities at the particle
locations to be spread.

In this section, we describe three mesh based approaches,
which we call single mesh, group mesh, and hybrid mesh.
The single mesh approach uses a data structure identical
to the compressed sparse row (CSR) data structure used
in sparse matrix computations. We describe a new fast
algorithm for GPUs for computing the spreading operator as
a sparse matrix in CSR format. To further improve perfor-
mance, we describe a new group mesh approach. Finally, for
completeness, we describe a hybrid mesh approach, which
is analogous to using the hybrid sparse matrix format in
cuSPARSE for representing the spreading operator.

B. Construction of Single Mesh and Group Mesh Data
Structures

The spreading approach that we describe here involves
precomputing mesh based data structures. The efficiency
of this preprocessing step must not be ignored, because it

itself is repeated for every particle configuration, and the
number of spreading steps over which it is amortized may
not necessarily be very large. In this section, we focus on
the efficient construction of the single and group mesh based
data structures.

We first consider a simple data structure to set the stage
for a more complex approach. As mentioned, the single mesh
data structure corresponds to a sparse matrix in CSR format.
The data structure is mesh based because rows, which are
stored contiguously, correspond to mesh points, and columns
correspond to particles. Constructing such a sparse matrix on
GPUs is straightforward, and is illustrated in Figure 2.

Figure 2: Constructing the spreading operator in the single mesh
data structure with p = 3. The solid blue dot and solid red triangle
represent two particles. For each particle, 9 GPU threads are used
to compute its spreading contributions as well as to update the rows
of the data structure.

Specifically, constructing the spreading operator in CSR
format consists of three steps: Count, Scan and Collect.
First, the Count step traverses all the particles to count
the number of spreading contributions to each mesh point.
Next, the Scan step performs a prefix sum on the counts
to obtain the starting positions of each mesh point in the
CSR matrix. Finally, the Collect step computes the spreading
contributions from each particle and inserts them into the
rows of the data structure. Since multiple threads may
attempt to update the same row of the matrix simultaneously,
atomic operations are used. (We rely, in some sense, on the
fact that the atomic operations are not too expensive, as
will be shown later.) In all three steps, we assign p3 threads
rather one thread to each particle to maximize use of parallel
resources.

An inefficiency with the above procedure, however, is that
in the Collect step, the threads assigned to each particle
are in one warp, but will update different rows of the CSR
matrix. The Collect step will have low performance on
GPUs because of non-coalesced memory access. To promote
coalesced memory access, we group sets of grid points in
the single mesh data structure. Within each group, a stored
interpolation weight must identify which mesh point it is
associated with. This gives the group mesh data structure. It
is similar it spirit to various multirow sparse matrix storage
formats for GPUs [13], [14], [15]. Figure 3 illustrates the
group mesh data structure.

The main advantage of the group mesh data structure,
compared to the single mesh data structure, is that it has
better memory access locality and tends to have coalesced
memory accesses. It is expected that constructing and using



Figure 3: Constructing the spreading operator in the group mesh
data structure with p = 3. The solid blue dot and red triangle
represent two particles. For each particle, 9 GPU threads are used
to compute its spreading contributions and update the rows of the
data structure.

the group mesh data structure is more efficient than for the
single mesh data structure. An issue with the group mesh
data structure is that the spreading step once again needs
to use atomic operations. Experimentally, we find that the
improved memory access patterns can make the group mesh
approach better than the single mesh approach, despite its
use of atomics.

C. Spreading Optimization

With the intermediate results of spreading stored in
the sparse matrix format, the spreading step can be effi-
ciently computed using sparse matrix-vector multiplications
(SpMV). While the optimization techniques for SpMV have
been intensively studied on GPUs [16], [17], we apply
special techniques to accelerate the spreading step on GPUs
that utilizes the hardware features introduced in the Kepler
microarchitecture.

We define a compute unit (CU) as a group of threads used
to collect the spreading contributions at a mesh point. By us-
ing more than one thread for a mesh point, thread divergence
is reduced and coalesced memory access is promoted. This
is analogous to why more than one thread is used to multiply
a row in GPU implementations of SpMV [16].

Using multiple threads for a mesh point or row, however,
requires the use of atomic operations because multiple
threads within a CU will update the same mesh point
simultaneously. To avoid the use of atomic operations, we let
a specific thread in the CU collect the sum using an intra-
CU reduction operation. On the Kepler microarchitecture,
the reduction operation can be efficiently implemented by
using a hardware feature called warp shuffle. Warp shuffle
is a new set of instructions that allows threads of a warp
to read each other’s registers, providing a new way to
communicate values between parallel threads besides shared
memory. Compared to shared memory communication, warp
shuffle is much more efficient. The throughput of warp
shuffle instructions is 32 operations per clock cycle per
multiprocessor for Kepler GPUs [18].

Figure 4 illustrates the intra-CU reduction implemented
using warp shuffle instructions. The figure shows a warp of
32 threads, organized such that 8 threads are assigned to
a row (or mesh point), i.e., CU=8. To perform a reduction
operation within a row using 8 threads, 3 iterations of warp

shuffle operations are needed, following the binomial tree
algorithm.

Figure 4: Illustration of intra-CU reduction using warp shuffle
operations. The reduction across 4 sets of 8 threads is performed
in 3 iterations following the binomial tree algorithm (see text).

The performance of the spreading step using the single
mesh method is dependent on the choice of the size of CU.
Here, we describe a heuristic of choosing the size of CU,
which can be expressed as

CUoptimal =


1 if N p3/K3 <1
2t if 2t ≤ N p3/K3 < 2t+1 and 0 ≤ t <4
16 if N p3/K3 ≥ 16

where N p3/K3 represents the average number of spreading
contributions per mesh point (ASM). In sparse matrix terms,
ASM is the average number of nonzeros per row.

To explain the heuristic, we use CU sizes that are powers
of 2 for efficiency of the warp shuffle reduction. The CU
size should also be at least larger than ASM, otherwise
some threads will be idle. When ASM is larger than 16, the
heuristic selects the optimal CU size as 16. Increasing the
CU size from 16 to 32 does not significantly improve the
load balance as 16 appears to be fine enough parallelism.
Also, increasing the CU size from 16 to 32 increases the
number of warp shuffle iterations from 4 to 5. We have run
some experiments to verify the heuristic. Figure 5 shows the
results.

Figure 5: The performance of the spreading step using the single
mesh method with various sizes of CU. p = 6 is used in the test.

The performance of the group mesh algorithm depends
on the selection of the group size (gsize), i. e., the number



of mesh points that are grouped together. On the one hand,
there is more write contention when gsize is small. On the
other hand, the total number of warps that can be used for
spreading is smaller when gsize is larger. We experimentally
determined that an optimal value of gsize is 64 for any
average number of spreading contributions per mesh point.
The number may vary on different GPUs. On the GPU
hardware used in our test, using gsize = 64 appears to be an
appropriate compromise between parallelism and memory
access conflicts. Figure 6 shows this result.

Figure 6: Performance of the spreading step using the group mesh
method with various gsize. The tests used K = 128 and p = 6.

D. Hybrid Mesh Approach
In general, the spreading operator can be stored in any

sparse matrix format. For completeness, we consider the
cuSPARSE ELL-COO hybrid format, which is perhaps
considered the most efficient matrix format for SpMV on
GPUs [16].

A two-step preprocessing phase is needed to construct
the spreading operator in this format. First, the spreading
operator is constructed in compressed sparse column (CSC)
format. This is natural because the interpolation coefficients
can be efficiently computed on a per particle basis, and the
coefficients for each particle corresponds to a column in the
spreading operator matrix. The CSC format is then trans-
formed to ELL-COO format using the cuSPARSE csc2hyb
function. In this function, the maximum number of spreading
contributions that can be stored in the ELL format, which
is denoted by Nhybrid , was chosen automatically.

The spreading operation for this format is simply the
hybrid SpMV operation provided by cuSPARSE. This oper-
ation does not need atomics, and due to extensive work by
NVIDIA in optimizing SpMV in cuSPARSE, we expect this
spreading operation to be very efficient.

IV. EXPERIMENTAL RESULTS

A. Test Platforms
Table I lists the GPUs used in our tests. Most experiments

were conducted on a NVIDIA K40c with the Kepler GK110
microarchitecture. For evaluating the effect of using atomic
operations, we also used a GTX 480, based on the earlier
Fermi microarchitecture. CUDA version 6.5 toolkit was used
in all the experiments.

Table I: NVIDIA test platforms

GPU K40c GTX 480
Architecture Kepler Fermi
Compute capability 3.5 2.0
CUDA cores 2,880 448
GPU clock rate 876MHz 1,401MHz
Memory clock rate 3,004 MHz 1,848MHz
L1 cache size 16KB 16KB
L2 cache size 1,536KB 768KB
Global memory size 12GB 1.5GB
No. of registers per block 64K 32K
Shared memory per block 48KB 48KB

B. Test Problems

The performance of particle mesh spreading will be
problem dependent, and therefore no single test problem
is sufficient, and we expect that different algorithms will
be best for different particle configurations. We propose
a class of test problems for particle-mesh problems. The
key parameter is the average number of spreading contribu-
tions for each mesh point, abbreviated ASM. To construct
problems with different values of ASM, we use different
numbers of particles ranging from 1000 to 10,000,000, and
different mesh dimensions K×K×K, with K chosen as 32,
64, 128 and 256. We also use values of the interpolation
parameter p of 4 and 6. In this paper, we generate random
positions for the particles using a uniform distribution over
the mesh. Nonuniform distributions will create load balance
issues which we do not address in this initial study.

C. Atomic Operation Overhead for Different Platforms

In previous work [10], [11], particle based approaches
were considered less efficient than mesh based approaches
method due to the use of atomic operations. While this
may be true on earlier GPU microarchitectures, the Kepler
GK110 microarchitecture has significantly improved perfor-
mance of atomic operations [19]. We are thus interested in
the improvement of the particle based approaches compared
to mesh based approaches on the contemporary GPU hard-
ware.

In this section, we test the particle based algorithm, and
show the overhead of atomic operations by comparing the
execution time of the algorithm itself and a modified version
that replaces atomic operations with normal global memory
store operations. We use both the Kepler platform and the
older Fermi platform. Although the modified version does
not generate correct results, it is useful for determining the
performance impact of atomic operations.

As shown in Figure 7, on the Fermi microarchitecture,
atomic operations add a very large overhead to the particle
based algorithm. On the Kepler microarchitecture, the over-
head is much smaller, and is only a small fraction of the
overall execution time.

Figure 8 compares the performance of the particle based
algorithm and the Gather algorithm on the Fermi and Kepler
microarchitectures. On Fermi, the particle based algorithm
requires more time than the Gather algorithm, but on Kepler,
the Gather algorithm requires more time. This change is
directly related to the improvement in performance of the
atomic operations on Kepler.



Figure 7: Performance impact of atomic operations in the particle
based algorithm. Blue circles show performance of the particle
algorithm. Green crosses show the performance if atomic opera-
tions are replaced by global memory writes. Top figure shows result
using the Fermi microarchitecture; bottom figure shows result using
the Kepler microarchitecture. The test problems used K = 64 and
p = 6.

Figure 8: Performance comparison between the particle based
algorithm and the Gather algorithm on Fermi and Kepler microar-
chitectures. The test problems used K = 64 and p = 6.

D. Comparison of Spreading Costs

In this section we compare the cost of the spreading
operations. For the mesh based algorithms, we do not include
the time for constructing the mesh based data structures.
These will be considered separately later in this paper.

Figure 9 shows the timing comparison between particle
based algorithm and mesh based algorithms. For the mesh
based algorithms, the preprocessing time is not included
here, but will be analyzed in a later section. We make the
following observations from the figure.

1. For small numbers of particles, the particle based
algorithm is best. Threads are less likely to experience
contention on atomic writes when there are fewer particles,
which gives this algorithm an advantage in this regime. It
can be observed in the figures that the slope of the timing
curve for this algorithm (red triangles) increases very slightly
as the number of particles is increased. This effect may be

due to greater contention due to more particles.
2. Except for small numbers of particles, the hybrid mesh

algorithm, using the cuSPARSE SpMV operation for the
hybrid format, is generally best.

3. The cost of the Gather algorithm is composed of
gathering contributions at each mesh point, and processing
the overflow particles (these are steps 2 and 3 of the Gather
algorithm, as explained in Section II.B.). When the number
of particles is much less than K3, there are few if any
overflow particles, and thus the cost of the algorithm is
independent of the number of particles. For K3 particles
or more, the overflow phase adds to the execution time.
The cost of this phase increases linearly with the number
of overflow particles. Thus there is an expected knee in the
timing for the Gather algorithm, as observed.

E. Comparison of Preprocessing Costs

In this section, we compare the costs of constructing the
mesh based data structures. From the sparse matrix point of
view, transferring from a particle based data structure to a
mesh based data structure is a matrix transpose operation.
However, note that in particle-mesh applications, there is
no sparse matrix corresponding to the particle based data
structure.

Figure 10 shows the overhead of constructing the mesh
based data structures. The group mesh data structure can be
constructed the fastest, due to better memory access patterns.
The hybrid mesh data structure (the ELL-COO format) is
generally slowest to construct. Unfortunately, hybrid mesh
spreading was the fastest among the mesh based approaches.

Figures 11 and 12 show the data structure construction
cost for the single mesh method and group mesh method,
respectively, for different grid size parameters, K. In both
cases, when the number of particles is small, the O(K3)
term of the cost dominates; when the number of particles is
large, the N p3 term of the cost dominates, where N is the
number of particles.

F. Spreading Multiple Times

In applications where spreading is performed multiple
times for the same particle configuration, the cost of con-
structing the mesh based data structure can be amortized.
Here we report the total cost (preprocessing plus spreading)
for 1 spreading step and 20 spreading steps with the same
particle configuration.

Figure 13 shows the overall performance of different
algorithms when the spreading is performed only once. As
seen in the figure, the particle based algorithm has the best
performance when the spreading is performed only once or
for very small number of times.

Figure 14 shows the overall performance when the spread-
ing is performed 20 times. Several conclusions can be
drawn from these figures. When the number of particles is
relatively small, the particle based algorithm still has the
best performance for the particle-mesh configurations. When
the number of particles is relatively large, the group mesh
method is best. Although the group mesh method is slower
than the hybrid mesh algorithm, the group mesh method
has lower data structure construction cost. It is expected
that the hybrid mesh algorithm is best if its data structure



Figure 9: Performance comparison between the particle based algorithm and the mesh based algorithm. The test problems used p = 6.

Figure 10: Performance comparison of constructing the mesh based
data structure for different algorithms (K = 128 and p= 6 was used
for the test problems).

Figure 11: Performance of matrix construction of the single mesh
method under various mesh dimensions. The spreading order p= 6.

construction time can be amortized over a very large number
of spreading steps.

When the dimension of the mesh is very small, e. g., 32,
and the number of particles is between 10,000 and 100,000,
the single mesh method has the best performance.

G. Comparison of Reduction Performance Using Warp
Shuffle and Shared Memory

In Tesla and Fermi microarchitecture based GPUs, shar-
ing data between parallel threads can only be done in
shared memory. In the newer Kepler GPU microarchitecture,
NVIDIA introduced a way to directly share data between
threads that are part of the same warp, using so called warp

Figure 12: Performance of matrix construction of the group mesh
method under various mesh dimensions. The spreading order p= 6.

shuffle instructions. By allowing threads of a warp read each
other’s registers, the warp shuffle instruction can be used to
achieve throughput that is usually much higher than by using
communication through shared memory.

In the single mesh method, we perform an intra-warp
reduction when applying spreading. The reduction is per-
formed by using warp shuffle optimizations. In this section,
we show the performance gain of this optimization, by
comparing the performance of single mesh spreading using
warp shuffle and shared memory reduction.

Figure 15 compares the execution time of the single mesh
method using two different reduction methods. As can be
seen, the single mesh method using warp shuffle reductions
is never worse than the shared memory counterpart. When
the average number of spreading contributions per mesh
point (ASM) is larger than 20, these two versions achieve
approximately the same performance. One explanation for
this phenomenon is that, when ASM is sufficiently large, the
shuffle or shared memory load is hidden by other costs such
as warp divergence or poor cache usage (Figure 5 tells us
one warp only uses half the cache line when ASM is larger
than 20).

V. CONCLUSION

In this paper, we discussed the advantages and disad-
vantages of various algorithms for particle-mesh spreading.
We categorized algorithms as being particle based or mesh
based. Those that are particle based generally require atomic
operations. Those that are mesh based require the construc-
tion of mesh based data structures. We introduced single



Figure 13: Comparison of the overall performance for 1 spreading operation.

Figure 14: Comparison of the overall performance for 20 spreading operations with the same particle configuration. The mesh based data
structures are only computed once and are reused.

Figure 15: Performance comparison of the single mesh method
using warp shuffle and shared memory reduction (K = 128 and
p = 6).

mesh and group mesh data structures that are related to
sparse matrix data structures.

Timing tests were used to determine which algorithms
are best for a test set parameterized by the average number
of particles per mesh point. When only a single spreading
operation is performed for a given particle configuration,
the simple particle based method is fastest. This is due to
very fast atomic operations on current GPU architectures.
When multiple spreading operations are performed and the
preprocessing costs can be amortized, the single mesh and
group mesh algorithms are marginally better, for moderate
numbers of spreading operations (around 20). For very large
numbers of spreading operations, the hybrid mesh approach
using the hybrid sparse matrix data structure in cuSPARSE
is fastest. This is due to very fast spreading but relatively
high data structure construction times.

This paper also introduced the use of warp shuffle oper-

ations for performing reductions for summing contributions
to a mesh point with multiple threads. This idea can be
extended to optimize the SpMV operation on GPUs for row-
based data structures.

ACKNOWLEDGEMENTS

This work was supported by the U.S. National Science
Foundation under grant ACI-1306573, the National Natural
Science Foundation of China (No. 61272087, 61363019 and
61073008), the Beijing Natural Science Foundation (No.
4082016 and 4122039), and the Sci-Tech Interdisciplinary
Innovation and Cooperation Team Program of the Chinese
Academy of Sciences.

REFERENCES

[1] A. Dutt and V. Rokhlin, “Fast Fourier transforms for nonequi-
spaced data,” SIAM Journal on Scientific Computing, vol. 14,
no. 6, pp. 1368–1393, 1993.

[2] A. F. Ware, “Fast approximate Fourier transforms for irregu-
larly spaced data,” SIAM Review, vol. 40, no. 4, pp. 838–856,
1998.

[3] H. Schomberg and J. Timmer, “The gridding method for
image reconstruction by Fourier transformation,” IEEE Trans-
actions on Medical Imaging, vol. 14, no. 3, pp. 596–607,
1995.

[4] D. B. Twieg, “The k-trajectory formulation of the NMR
imaging process with applications in analysis and synthesis
of imaging methods,” Medical Physics, vol. 10, no. 5, pp.
610–621, 1983.

[5] M. K. M. Soumekh, “Computer-assisted diffraction tomogra-
phy,” Image Recovery: Theory and Application, p. 369, 1987.

[6] T. Darden, D. York, and L. Pedersen, “Particle mesh Ewald
– an N log(N) method for Ewald sums in large systems,”
Journal of Chemical Physics, vol. 98, no. 12, pp. 10 089–
10 092, 1993.



[7] A. W. Götz, M. J. Williamson, D. Xu, D. Poole, S. Le Grand,
and R. C. Walker, “Routine microsecond molecular dynamics
simulations with AMBER on GPU. 1. Generalized Born,”
Journal of Chemical Theory and Computation, vol. 8, no. 5,
pp. 1542–1555, 2012.

[8] D. Saintillan, E. Darve, and E. S. G. Shaqfeh, “A smooth
particle-mesh Ewald algorithm for Stokes suspension simula-
tions: The sedimentation of fibers,” Physics of Fluids, vol. 17,
no. 3, p. 033301, 2005.

[9] X. Liu and E. Chow, “Large-scale hydrodynamic Brownian
simulations on multicore and manycore architectures,” in
28th IEEE International Parallel & Distributed Processing
Symposium, 2014.

[10] M. Harvey and G. De Fabritiis, “An implementation of the
smooth particle mesh Ewald method on GPU hardware,”
Journal of Chemical Theory and Computation, vol. 5, no. 9,
pp. 2371–2377, 2009.

[11] W. M. Brown, A. Kohlmeyer, S. J. Plimpton, and A. N.
Tharrington, “Implementing molecular dynamics on hybrid
high performance computers–particle–particle particle-mesh,”
Computer Physics Communications, vol. 183, no. 3, pp. 449–
459, 2012.

[12] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee,
and L. G. Pedersen, “A smooth particle mesh Ewald method,”
The Journal of Chemical Physics, vol. 103, no. 19, pp. 8577–
8593, 1995.

[13] T. Oberhuber, A. Suzuki, and J. Vacata, “New row-grouped
CSR format for storing the sparse matrices on GPU with
implementation in CUDA,” arXiv preprint arXiv:1012.2270,
2010.

[14] Z. Koza, M. Matyka, S. Szkoda, and L. Miroslaw, “Com-
pressed multirow storage format for sparse matrices on graph-
ics processing units,” SIAM Journal on Scientific Computing,
vol. 36, no. 2, pp. C219–C239, 2014.

[15] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R.
Bishop, “A unified sparse matrix data format for efficient
general sparse matrix-vector multiplication on modern pro-
cessors with wide SIMD units,” SIAM Journal on Scientific
Computing, vol. 36, no. 5, pp. C401–C423, 2014.

[16] N. Bell and M. Garland, “Implementing sparse matrix-vector
multiplication on throughput-oriented processors,” in Pro-
ceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, ser. SC ’09. New York,
NY, USA: ACM, 2009, pp. 18:1–18:11.

[17] J. W. Choi, A. Singh, and R. W. Vuduc, “Model-driven
autotuning of sparse matrix-vector multiply on GPU,” in Pro-
ceedings of the 15th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, ser. PPoPP ’10. New
York, NY, USA: ACM, 2010, pp. 115–126.

[18] NVIDIA, “CUDA C Programming Guide,” 2014.

[19] ——, “NVIDIA Kepler GK110 Architecture Whitepaper,”
2012.


