
Support Vector Machine Study
Summary (I): Intuition
(From http://billyinn.wordpress.com/2014/10/28/support-vector-machine-study-summary-i-intuition/)

1, Introduction
Fine to skip this section if willing.

As generally known, SVM may be the most powerful and widespread classifier nowadays. However, due to
the complicated mathematics inside and some convient libraries like LIBSVM, most of us including me just
use it as a blackbox tool without knowing how it works.

I am just a beginner in statistical machine learning, and use SVM as a omnipotent classifier. Whenever I
encounter a classifying problem, the first thing I do is to throw the data into SVM and see how the
performance is. But the curiosity makes me want to make clear of what the SVM exactly is.

So, I plan to write a series of study summaries of SVM. The preliminary plan is to write three summaries
including intuition, mathematical deduction and implementation. Also I want to write an advanced topic
about parallelizing SVM on GPU hardware and achieveing better performance if possible.

2, Linear SVM

Intuition

I've read several books' chapters and articles about SVM. All of them first introduce the Linear SVM. For it's
easy to understand the essence of SVM, I also start with it.

What is Linear SVM? It's not hard to understand, just as the two dimensional picture illustrated (the pic is
captured from Andrew Ng's Machine Learing Courses), we can seperate the two classes with a linear
boundary. And the Linear SVM can give the seperating line when the classes are separable by a linear
boundary, otherwise the Linear SVM fails.

http://billyinn.wordpress.com/2014/10/28/support-vector-machine-study-summary-i-intuition/

However when the classes are seperable by a linear boundary, there are infinite feasible linear boundaries.
How Linear SVM find the desired boundary and what metric it use to determine it? On one side, we can
establish a metric considering all the examples and try to optimize it; on the other side, it's also reasonable
to find a linear boundary which makes the closest example as far as possible. Just as the picture above
illstruated, the black line is better than the green and the purple line from our intuition. And in my opinion,
it's the basic difference between logistic regression and SVM. Logistic regression use the first metric and
SVM use the second. As a result, SVM classifier is also called as large margin classifier.

Definition

Now, it's time to introduce some basic definition to generalize the case to the high dimension which is not
that easy to image.

Supposing that there are training examples , where
. is the th feature vector; is the 's label. If

, is a positive example; otherwise, is a negative example.

When the dimension is larger than 2, the boundary would not be a line any more. We now call it as
hyperplane in general. The hyperplane can be represented as . And then here is the judge
function and the classify function . If you are still not familiar with
the notation sgn, see more details on this page.

Then it's time to introduce the metric we use to measure the performance of this hyperplane. In general, the
distance between the example and the hyperplane, namely , can represent the certainty of the
prediction of the classifier. Notice that whether the sign of is equal to the sign of can determine
the correctness of the prediction, so we can use can represent the correctness and certainty
of the classification which we call it as functional margin. It seems really nice to be the measurement.

Definition(Functional Margin)
Given the training examples set and hyperplane , define the functional margin of example

 as , and define the functional margin of all examples in as
.

However, the functional margin is not enough. If we change and in scale, our functional margin will also
change with exactly the same hyperplane. This fact tells us that we need to give some constraints to w. In
practice, we normalize that so that the margin can be determined which we call it as geometric
margin, where is 's norm. See more details about norm on this page.

Definition(Geometric Margin)
Given the training examples set and hyperplane , define the geometric margin of example

 as , and define the geometric margin of all examples in as
.

N {(,), (,),… , (,)}x1 y1 x2 y2 xN yN
! = , y ! = {+1,+1}, i = 1, 2,… , Nxi Rn xi i yi xi

= +1yi xi xi

w 0 x + b = 0
g(x) = w Þ x + b f (x) = sgn(w Þ x + b)

<w Þ x + b<
w Þ x + b y

y(w Þ x + b)

T (w, b)
(,)xi yi = (w Þ + b)γ̂ i yi xi T

=γ̂ min
i=1,…,N

γ̂ i

w b

>w> = 1
>w> w

T (w, b)
(,)xi yi = (Þ +)γi yi

w
>w> xi

b
>w> T

γ = min
i=1,…,N

γi

http://en.wikipedia.org/wiki/Sign_function
http://en.wikipedia.org/wiki/Normed_vector_space

From the picture above(from the posts of SVM on blogjava.net), we can understand the concept of
geometric margin more clearly. H is the hyperplane, H1 and H2 are parallel to H and go through the cloest
examples, and the distance between H1 and H1 is the geometric margin.

One thing should be told is that the fact, the wider the margin the better the hyperplane, is not only from
our intuition but also can be proved theoretically. There is a relationship between the times of predicting
failure and geometric margin: , where . Now, we're sure that

the training objective is to maximize the geometric margin.

Objective

We now know the objective from our intuition, but we also need to state our objective more formally and
make it more clear:

Note that , the geometric margin is inversely proportional to . Therefore, instead of

maximizing , we would rather minimize with fixed to 1. Why we can do this? Actually, the value of
functional margin make no difference to the solution our problem, because we can change and in
scale to change at the same time. Then it produces an equivalent objective.

To make the objective easier to handle in mathematics, we need to transform the objective a little bit.
Obviously, is equivalent to . As a result, the objective transformed to the form:

This a problem called convex quadratic programming in mathematics. I will explore deeper into it in my next
summary.

Here I don't want to talk too much about the mathematical deduction here. But the problem has some

TimesOfFailure } (2R
γ)2 R = > >max

i=1,…,N
xi

γmax
w,b

s. t. (Þ +) ~ γ, i = 1, 2,… , Nyi
w
>w> xi

b
>w>

γ = γ̂
>w> γ >w>

γ >w> γ̂
w b

γ̂

min>w> min 1
2 >w>2

min
w,b

1
2 >w>2

s. t. (w Þ + b) + 1 ~ 0 i = 1, 2,… , Nyi xi

http://www.blogjava.net/

really nice properties:

Theorem(Existence and Uniqueness of the Maximum-Margin Hyperplane)
If the training example set is linear separable, the maximum-margin hyperplane which can separate
the examples in the set correctly exists and is unique.

Now, the objective is clear enough. Just skip how to reach the objective a little while, and first consider the
non-separable cases.

3, Slack Variables
In practice, the classes are often not fortunate enough to be linear separable completely, especially there
are just some outliers in the examples. And then, all we mention above don't work any more. How we can
extend the linear situation to the non-linear situation? Maybe we can just drop those outliers and the
performance may even not be affected. However, the machines cannot recognize these outliers
themselves, so we introduce a slack variable to each example .

Then the constraint condition change to the form:

The introduction of slack variables can help us get larger margin and smoother boundary at the expense of
the accurate prediction of some examples. When we want to drop some examples, we need to pay costs
for them. So we add a term to the objective function:

 is the cost parameter. The larger will be, the more cost we will pay for dropping the examples. When
 becomes infinite large, we go back to the situation of linear separable cases.

There is several things to be noted:

In actual, only ontliers have the slack variables. Most examples' slack variables are equal to zero.
The slack variables represent how far the example is away from the predicted class group.
The cost parameter is a constant and won't change with our optimization which will be discussed
later.
Though, the form of the objective seems to be changed, it can be solved with the similar method just
like the linear separable cases.

4, Kernel Trick

T

~ 0ξi (,)xi yi

(w Þ + b) ~ 1 + i = 1, 2,… , Nyi xi ξi

>w> + C1
2 *

i=1

N
ξi

C C
C

C

However, sometimces the two classes cannot be separable thoroughly, just like the picture below.
Fortunately, the kernel trick can solve the problem well and in a quite awesome way in my perspective.

Transform the Objective

Two parameters determine the hyperplane, so the objective is to find . In actual, if we know , we
can calculate too. Why? Because and we already , it's easy to get .

 can be determined by , which determine ? Obviously, the examples (these are all what we
have). And the hyperplane is linear so far, so we can state the relationship between and :

Now, we can see as normal parameters, which is called as Lagrange Multipliers in mathematics. I will
explore deeper into it in my next summary, if interested, see more details on this page. Don't forget
here are all n-dimensional vectors here.

Actually, most is zero, only those examples lie on the boundary have values other than zero. And the final
hyperplane is determined by these examples and has nothing to do with other examples. These
determining examples are called Support Vectors, and it's how Support Vector Machine comes from.

We can now have a more clear form:

Then there is no in the . We can now introduce the concept of the kernel and generalize our problem
to the non-linear-separable cases.

Kernel Trick Intuition

All we discuss before is about linear SVM and we definitely don't want to give up it all. If there are some
methods that can transform the non-linear cases to the linear cases? Sure, it's why we introduce the kernel
trick!

w, b w, b w
b w Þ x + b = 0 w, x b

b w w (x, y)
w x

w = + + ⋯ +α1y1x1 α2y2x2 αN yN xN

αi

w, x

α

w = *
i=1

N
aiyixi

g(x) = Þ x + b*
i=1

N
aiyixi

w g(x)

http://en.wikipedia.org/wiki/Lagrange_multiplier

Just as the picture above, we cannot separate the two classes with the linear model
 but we can set a mapping from the lower dimension to the higher dimension. We

define a mapping from the origin space to the new space , then the points in the origin
space are transformed to the corresponding points in the new space.

The ellipse in the origin space now transform to the line in the new space
. Wonderful, isn't it? Now we can seperate the classes with our linear model again!

In mathematics, the origin space is called Euclidean Space and the new space is called Hilbert Space,
something in algebra that I haven't figure out thoroughly.

But how to find such mappings? Unfortunately, there seems to be no systematic methods. We need to
guess and try ourselves. However, don't worry about that, people have found several powerful kernel
functions and these functions may be enough for us.

Kernel Function

Suppose that we have examples with dimensions in non-linear cases, we map them to
 with dimensions so that they can be separated linearly.

Note that the mapping just involves with and has nothing to do with or . We can represent the in
another form:

where means the dot product of two vectors, see more details about dot product on this page.

 is the high dimension linear function. If we substitute with a function of , it becomes
exactly the lower dimension form:

And with , and unchanged. Then we can solve this problem with the linear model, and all we have to
do is just substitute the dot product with the kernel function.

The last problem: which functions can be kernel functions? The problem is nothing mathematics. Actually,
if a function satisfies the mercer condition, it can be a kernel function. I don't want to discuss it further, if
interested, see more details on this page.

+ + b = 0w1x1 w2x2

z = ((,)x2
1 x2

2)T

+ + b = 0w1x2
1 w2x2

2
+ + b = 0w1z1 w2z2

, i = 1, 2,…Nxi n
x ′

i 2n

x y α g()x ′

g() = < , > +bx ′ *
i=1

N
aiyi x ′

i x ′

< Þ >

g()x ′ < , >x ′
i x ′ x

g(x) = K(, x) + b*
i=1

N
aiyi xi

α yi b

http://en.wikipedia.org/wiki/Dot_product
http://en.wikipedia.org/wiki/Mercer%27s_condition

There all lots of kernel functions listed on the web pages and textbooks, but the choose of kernel functions
still doesn't have general prinicles. In practice, the most often used kernel function is Gaussian kernel
function:

K(x, z) = exp(+)>x+z>2

2σ 2

