Billy Ian's Short Leisure-time Wander

into learning, investment, intelligence and beyond

ML With R (2): Regularized Linear Regression

| Comments

Code in R for Coursera-ML and CMPUT466/551 in University of Alberta

This post refers to programming exercise 5 in Coursera-ML. All the code can be found in this repo.

setwd("~/Coding/R/CMPUT466/mlclass-ex5")
library(ggplot2)
library(R.matlab)
library(devtools)
source_url("https://raw.githubusercontent.com/ggrothendieck/gsubfn/master/R/list.R")

Regularized Linear Regression

Visualizing the dataset

Use a scatter plot to visualize the data.

data <- readMat("ex5data1.mat")
X <- data$X
y <- data$y
Xtest <- data$Xtest
ytest <- data$ytest
Xval <- data$Xval
yval <- data$yval
df <- data.frame(X=X, y=y)
ggplot(df, aes(X, y, col="Training data")) + geom_point(shape=I(4), size=I(3)) +
  labs(x="Change in water level (x)", y="Water flowing out of the damn (y)") +
  scale_color_manual(guide=FALSE, values=c("Red"))

Regularized linear regression cost function

Compute the cost function with a regularized term:

\[J(\theta)=\left(\sum_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})^2\right)+\frac{\lambda}{2m}\left(\sum_{j=1}^n\theta_j^2\right)\]

where \(\lambda\) is a regularization parameter which controls the degree of regularization.

computeCost = function(theta, X, y, lambda) {
  m = length(y)
  n = length(theta)
  sum((X %*% theta - y)^2)/(2*m) + lambda/(2*m)*t(theta[2:n]) %*% theta[2:n]
}

myTheta <- c(1., 1.)
computeCost(myTheta, cbind(1, X), y, 1)
##          [,1]
## [1,] 303.9932

Regularized linear regression gradient

Compute gradient of the cost function with a regularized term:

computeGrad = function(theta, X, y, lambda) {
  m = length(y)
  n = length(theta)
  tmp <- theta
  tmp[1] = 0
  1./m*t(X) %*% (X %*% theta - y) + lambda/m*tmp
}

computeGrad(myTheta, cbind(1, X), y, 1)
##           [,1]
## [1,] -15.30302
## [2,] 598.25074

Fitting linear regression

Use the optim function to fit the linear regression and plot the fitted line.

trainLinearReg <- function(X, y, lambda, maxit) {
  n <- dim(X)[2]
  theta <- matrix(0, n, 1)
  res <- optim(theta, computeCost, computeGrad, X, y, lambda, method = "CG", control = list(maxit = maxit))
  res$par
}

lambda <- 0
theta <- trainLinearReg(cbind(1,X), y, lambda, 10000)

df$y.pred <- cbind(1, X) %*% theta
ggplot(df, aes(X, y, col="Training data")) + geom_point(shape=I(4), size=I(3)) +
  labs(x="Change in water level (x)", y="Water flowing out of the damn (y)", title="Linear Regression Fit") +
  geom_line(aes(X, y.pred, col="Regularized linear regression")) +
  scale_color_manual(guide=FALSE, values=c("Blue", "Red"))

Bias-variance

Learning curves

Learning curves are useful in debugging learning algorithms which plot training and validation error as a function of training set size.

learningCurve <- function(X, y, X_val, y_val, lambda, maxit) {
  m = length(y)
  error.train = matrix(0, m, 1)
  error.valid = matrix(0, m, 1)
  for(i in 1:m) {
    theta <- trainLinearReg(X[1:i,,drop=FALSE], y[1:i], lambda, maxit)
    error.train[i] = computeCost(theta, X[1:i,], y[1:i], 0)
    error.valid[i] = computeCost(theta, X_val, y_val, 0)
  }
  list(error.train=error.train, error.valid=error.valid)
}
list[error.train, error.valid] <- learningCurve(cbind(1, X), y, cbind(1, Xval), yval, lambda, 10000)

m = length(y)
df_lc <- data.frame(x=1:m, error.train=error.train, error.valid=error.valid)
ggplot(df_lc, aes(x)) + geom_line(aes(y=error.train, col="training error")) +
  geom_line(aes(y=error.valid, col="validation error")) +
  labs(x="Number of training examples", y="Error", title="Learning curve for linear regression") +
  scale_color_discrete(name="")

Polynomial regression

For polynomial regression, our hypothesis has the form:

\[h_\theta(x) = \theta_0+\theta_1 x + \theta_2 x^2 + \dots + \theta_p x^p\]

Learning Polynomial Regression

Even though we have polynomial terms in our feature vector, we are still solving a linear regression optimization problem. The polynomial terms have simply turned into features that we can use for linear regression. As a result, we can use the function written before.

polyFeatures = function(X, p) {
  X_poly = matrix(0, length(X), p)
  for(i in 1:p)
    X_poly[,i] = X^i
  X_poly
}

p <- 8
X_poly <- polyFeatures(X, p)
X_poly <- scale(X_poly)
mu <- attr(X_poly, "scaled:center") 
sigma <- attr(X_poly, "scaled:scale")
X_poly <- cbind(1, X_poly)

X_poly_test <- polyFeatures(Xtest, p)
X_poly_test <- sweep(X_poly_test, 2, mu)
X_poly_test <- sweep(X_poly_test, 2, sigma, "/")
X_poly_test <- cbind(1, X_poly_test)

X_poly_val <- polyFeatures(Xval, p)
X_poly_val <- sweep(X_poly_val, 2, mu)
X_poly_val <- sweep(X_poly_val, 2, sigma, "/")
X_poly_val <- cbind(1, X_poly_val)

lambda <- 0
n = dim(X_poly)[2]
theta <- trainLinearReg(X_poly, y, lambda, 200)

idx <- seq(min(X)-15, max(X)+15, length.out=100)
X_poly_fit <- polyFeatures(idx, p)
X_poly_fit <- sweep(X_poly_fit, 2, mu)
X_poly_fit <- sweep(X_poly_fit, 2, sigma, "/")
X_poly_fit <- cbind(1, X_poly_fit)
df_fit <- data.frame(x=idx,y=X_poly_fit %*% theta)
ggplot(df, aes(X, y, col="Training data")) + geom_point(shape=I(4), size=I(3)) +
  labs(x="Change in water level (x)", y="Water flowing out of the damn (y)", title=sprintf("Polynomial Regression Fit (lambda = %.1f)", lambda)) +
  geom_line(aes(x, y, col="Regularized polynomial regression"), df_fit, linetype="dashed") +
  scale_color_manual(guide=FALSE, values=c("Blue", "Red"))

Also, plot the learning curve for polynomial regression.

list[error.train, error.valid] <- learningCurve(X_poly, y, X_poly_val, yval, lambda, 200)
df_lc <- data.frame(x=1:m, error.train=error.train, error.valid=error.valid)
ggplot(df_lc, aes(x)) + geom_line(aes(y=error.train, col="training error")) +
  geom_line(aes(y=error.valid, col="validation error")) +
  labs(x="Number of training examples", y="Error", title=sprintf("Polynomial Regression Learning Curve (lambda = %.1f)", lambda)) +
  scale_color_discrete(name="")

Select \(\lambda\) using a cross validation set

The value of \(\lambda\) can significantly affect the results of regularized polynomial regression on the training and validation set. We use a validation set to evaluate how good each \(\lambda\) value is. After selecting the best \(\lambda\) value using the validation set, we can then evaluate the model on the test set to estimate how well the model will perform on actual unseen data.

validationCurve <- function(X, y, Xval, yval, maxit) {
  lambda_vec = c(0, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10)
  m = length(lambda_vec)
  error.train = matrix(0, m, 1)
  error.valid = matrix(0, m, 1)
  for(i in 1:m) {
    lambda = lambda_vec[i]
    theta <- trainLinearReg(X, y, lambda, maxit)
    error.train[i] = computeCost(theta, X, y, 0)
    error.valid[i] = computeCost(theta, Xval, yval, 0)
  }
  list(lambda_vec=lambda_vec, error.train=error.train, error.valid=error.valid)
}
list[lambda_vec, error.train, error.valid] <- validationCurve(X_poly, y, X_poly_val, yval, 200)

df_cv <- data.frame(lambda_vec=lambda_vec, error.train=error.train, error.valid=error.valid)
ggplot(df_cv, aes(lambda_vec)) + geom_line(aes(y=error.train, col="training error")) +
  geom_line(aes(y=error.valid, col="validation error")) +
  labs(x="Lambda", y="Error") +
  scale_color_discrete(name="")

Comments