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Information Extraction

The process of Information Extraction (IE) is the task of
automatically extracting structured information from unstructured
documents.
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Example

When you read one news article started with:

Steve Kerr has turned down Phil Jackson and the New York
Knicks to accept a five-year, $25 million offer to become the
Golden State Warriors’ next coach, saying “it just felt like the
right move on many levels.”

To understand the information encoded in this sentence, you will
need to at least know the people and organizations mentioned and
the semantic relations among them.
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Tasks

The task of named entity recognition (NER) is to find each
mention of a named entity in the text and label its type.

As compared to traditional NER, Fine-grained entity type
classification (FETC) works on a much larger set of
fine-grained types which form a tree-structured hierarchy.

The task of relation extraction (RE) is to find and classify
semantic relations among entity mentions.
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IE without Manual Annotated Data

Challenge: the absence of human-annotated data

Approach: resort to distant supervision and annotate training
corpora automatically using KBs

Disadvantage: introduction of label noise

A typical workflow of distant supervision:

1 identify entity mentions in the documents

2 link mentions to entities in KB

3 assign, to each entity mention or entity pair, all types or
relations associated in a KB
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Deep Neural Networks for NLP

Over the past few years, we have witnessed the huge success of
neural networks as powerful machine-learning models, yielding
state-of-the-art results in many fields including NLP. As a result,
we use DNNs as the backbone of our proposed models.
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Knowledge Base Embedding

Knowledge bases (KBs) enable various real-world applications.

A major challenge to use KBs: lack of capability of accessing
the similarities among different entities and relations.

The main idea of knowledge base embedding (KBE)
techniques is to represent the entities and relations in a vector
space.

These embeddings can help IE tasks by incorporating
knowledge information.
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The Task: Fine-Grained Entity Type Classification

Traditional Coarse-Grained Entity Type Classification, as a
sub-task of Named Entity Recognition (NER), focuses on a
small set of coarse types.

Fine-Grained Entity Type Classification (FETC) aims at
labeling entity mentions in context with one or more specific
types organized in a hierarchy.

Figure: Traditional coarse-grained types are colored in black. Fine-grained
types are colored in red.
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Motivation

Fine-grained types help in many applications:

relation extraction

question answering

coreference resolution

entity linking

knowledge base completion

entity recommendation

and so on...
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Characteristics of FETC

Context dependent labeling

Hierarchical structure of entity types

Collapse of the mutual exclusion assumption

Noise in automatically annotated data
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Multi-label vs. Single label

In FETC, types are not mutually exclusive!
It is natural to formulate the task as a multi-label classification
problem and most FETC methods adopt this setting.
However,

context dependent labeling → assumption that one mention
can only have one type-path along the hierarchy

type hierarchy is a tree → each type-path can be uniquely
represented by the terminal type (not necessarily a leaf node)

Then, the task can be transformed to predict the terminal type of
the type-path in the hierarchy, which is a single-label classification
problem!
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Pros and Cons to Adopt Single Label Setting

Pros:

1 Simpler and more elegant

2 Benefit from previous research

3 No post-processing needed

Cons:

1 The upper bounds are no longer 100% (But, is that really
important? State-of-the-art methods are nowhere near 80%
strict accuracy.)

FIGER(GOLD) OntoNotes

# types 113 89

# raw testing mentions 563 8963

% testing mentions with
single type-path

88.28 94.00
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Out-of-context Noise

One kind of noise introduced by distant supervision is assigning
labels that are out-of-context.
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Overly-specific Noise

Another source of noise introduced by distant supervision is when
the type is overly-specifc for the context.
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Typical FETC Methods

Attentive AFET LNR A&A
without manual features 7 7 7 3

use attentive neural network 3 7 7 7

adopt single label setting 7 7 7 7

handle out-of-context noise 7 3 3 3

handle overly-specifc noise 7 3 3 7

1 Attentive: Shimaoka et al. (2017)

2 AFET: Ren et al. (2016a)

3 LNR: Ren et al. (2016b)

4 A&A: Abhishek and Awekar (2017)
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Our Proposed Model: NFETC

NFETC is a single, much simpler and more elegant neural model
that attempts FETC “end-to-end” without post-processing or
ad-hoc features.

Attentive AFET LNR A&A NFETC

without manual features 7 7 7 3 3

use attentive neural network 3 7 7 7 3

adopt single label setting 7 7 7 7 3

handle out-of-context noise 7 3 3 3 3

handle overly-specifc noise 7 3 3 7 3
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Neural Architecture



21/48

A Simple Yet Effective Variant of Cross-Entropy

Traditional cross-entropy loss:

J(θ) = − 1

N

N∑
i=1

log(p̂(yi )), (1)

which can’t handle data with multi type-paths (that is, with
out-of-context noise). A simple yet effective variant of the
cross-entropy loss:

J(θ) = − 1

N

N∑
i=1

log(p̂(y∗i )), (2)

where y∗i = arg maxy∈Yi p̂(y) and Yi is the labelled type set.
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Hierarchical Loss Normalization: Intuition
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Hierarchical Loss Normalization 1

Based on the intuition, we adjust the estimated probability to:

p∗(ŷ) = p(ŷ) + β ∗
∑
t∈Γ

p(t) (3)

where Γ is the set of ancestor types along the type-path of ŷ , β is
a hyperparameter. In this way, the model will:

1 get less penalty when it predicts the actual type for data with
overly-specific noise

2 prefer generic types unless there is a strong indicator for a
more specific type in the context

1Hierarchical loss function (Cai and Hofmann, 2004) was originally
introduced in the context of document categorization with SVM. However,
they assume that weights to control the hierarchical loss can be solicited from
domain experts which is inapplicable for FETC.
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Experiments

Datasets: FIGER(GOLD) & OntoNotes

FIGER(GOLD) OntoNotes

# types 113 89

# raw training mentions 2009898 253241

# raw testing mentions 563 8963

% filtered training mentions 64.46 73.13

% filtered testing mentions 88.28 94.00

Max hierarchy depth 2 3

Evaluation Metrics: Strict Accuracy, Macro F1 and Micro F1
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Results

FIGER(GOLD) OntoNotes
Model Strict Acc. Macro F1 Micro F1 Strict Acc. Macro F1 Micro F1
Attentive 59.68 78.97 75.36 51.74 70.98 64.91
AFET 53.3 69.3 66.4 55.1 71.1 64.7
LNR+FIGER 59.9 76.3 74.9 57.2 71.5 66.1
A&A 65.8 81.2 77.4 52.2 68.5 63.3
NFETC(f) 57.9± 1.3 78.4± 0.8 75.0± 0.7 54.4± 0.3 71.5± 0.4 64.9± 0.3
NFETC-hier(f) 68.0± 0.8 81.4± 0.8 77.9± 0.7 59.6± 0.2 76.1± 0.2 69.7± 0.2
NFETC(r) 56.2± 1.0 77.2± 0.9 74.3± 1.1 54.8± 0.4 71.8± 0.4 65.0± 0.4
NFETC-hier(r) 68.9± 0.6 81.9± 0.7 79.0± 0.7 60.2± 0.2 76.4± 0.1 70.2± 0.2

Variants of our proposed model:

NFETC(f): basic model trained on data with single type-path

NFETC-hier(f): with hierarchical loss normalization trained on
data with single type-path

NFETC(r): with variant of cross-entropy trained on raw data

NFETC-hier(f): with variant of cross-entropy and hierarchical
loss normalization trained on raw data



26/48

Case Study

Test Sentence Ground Truth Prediction (w/o HLN) Prediction (w HLN)
S1: Hopkins said four fellow elections is
curious , considering the . . .

Person Politician Person

S2: . . . for WiFi communications across all
the SD cards.

Product Software Product

Test Sentence Ground Truth Prediction (original CE) Prediction (improved CE)
S3: ASC Director Melvin Taing said
that because the commission is . . .

Organization Title Organization

Test Sentence Ground Truth Failed Prediction
S4: A handful of professors in the UW De-
partment of Chemistry . . .

Educational Institution Organization

S5: Work needs to be done and, in Wash-
ington state, . . .

Province City
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Task and Motivation

Knowledge Bases (KBs) are used in support of many
important NLP applications.

Building KBs is a non-trivial and never-ending task.

As the world changes, new knowledge needs to be harvested
while old knowledge needs to be revised.

Relation Extraction: assign a KB relation to a sentence
containing a pair of entities, which in turn can be used for
updating the KB.
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Wrong Labelling Problem

Although distant supervision is an effective strategy to
automatically label training data, it always suffers from wrong
labelling problem.

Example 1: Relation founder of

Correct: Steve Jobs was the co-founder and CEO of Apple and
formerly Pixar.
Wrong: Steve Jobs passed away the day before Apple unveiled
iPhone 4S in late 2011.

Example 2: Relation president of

Correct: Barack Obama is an American politician who served as
the 44th President of the United States.
Wrong: Barack Obama was born in 1961 in the United States.
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Attention Mechanisms

Human visual attention is able to focus on a certain region of
an image with “high resolution” while perceiving the
surrounding image in “low resolution”.

For NLP, it can help the model distinguish which parts of the
given texts are more indicative for the task.
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Bi-LSTM with Multi-Level Attention Mechanisms

Bi-LSTM as the backbone of our model.

Word-level attention to capture the most informative phrase.

Sentence-level attention to address the wrong labelling
problem.
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Experiments

Dataset: NYT

align Freebase relations mentioned in the New York Times
Corpus
Articles from years 2005-2006 for training
Articles from 2007 for testing

Evaluation Metric: Precision/Recall curves

Baselines: Three feature-based methods and two
convolutional neural network based methods

Mintz: Mintz et al. (2009)
MultiR: Hoffmann et al. (2011)
MIML: Surdeanu et al. (2012)
CNN+ATT: Lin et al. (2016)
PCNN+ATT: Lin et al. (2016)
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Results
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Introduction

A related task of RE is Knowledge Base Embedding (KBE)

Weston et al. (2013) was the first to show that combining
predictions from RE and KBE models, trained in isolation,
improves the effectiveness on the RE task.

Their strategies are rather naive and unable to give
improvements for the state-of-the-art neural RE model.

Scombined = αSRE + (1− α)SKBE
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Facilitating Relation Extraction with Existing Strategies

Figure: Precision-recall curves of TransE with different alpha.
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Cont.

Figure: Precision-recall curves of ComplEx with different alpha.
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Our Approach: The Overall Framework Hrere

The language representation is learnt based on the input set
of sentences S for each entity pair with the neural
architecture described in the previous section.

With the language representation, we can get the probability
p(r |S).
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Knowledge Representation

Following the score function φ and training procedure of
Trouillon et al. (2016), we can get the knowledge
representations eh,wr , et .

With the knowledge representations and the score function,
we can get the probability:

p(r |h, t) =
eφ(eh,wr ,et)∑
r ′ e

φ(eh,wr′ ,et)
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Connecting Representations

The cross-entropy losses based on the language and knowledge
representations are defined as:

JL = − 1

N

N∑
i=1

log p(ri |Si )

JG = − 1

N

N∑
i=1

log p(ri |(hi , ti ))

In addition, a cross-entropy loss is used to measure the dissimilarity
between two distributions, thus connecting them:

JD = − 1

N

N∑
i=1

p(r∗i |Si )

where r∗i = arg max p(r |(hi , ti )).
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Model Learning

We form the joint optimization problem for model parameters as

min
Θ
J = JL + JG + JD + λ‖Θ‖2

2

where Θ is the set of all the parameters in the model. We adopt
the stochastic gradient descent with mini-batches and Adam
(Kingma and Ba, 2014) to update Θ.
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Experiments

Dataset: NYT

Knowledge Base: a Freebase subset with the 3M entities with
highest degree

Evaluation Metrics: Precision/Recall curves and P@N.

Baselines:

CNN+ATT: Lin et al. (2016)
PCNN+ATT: Lin et al. (2016)
Weston: combine the scores computed with methods proposed
directly without joint learning

Variants of our proposed framework:

Hrere-base: basic neural model with local loss only
Hrere-naive: neural model with both local and global loss
but without the dissimilarities
Hrere-full: neural model with both local and global loss
along with their dissimilarities
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Results
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Cont.

P@N(%) 10% 30% 50%

Weston 79.3 68.6 60.9
Hrere-base 81.8 70.1 60.7
Hrere-naive 83.6 74.4 65.7
Hrere-full 86.1 76.6 68.1

Table: P@N of Weston and variants of our proposed framework.
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Case Study

Much of the middle east tension stems from the sense
that shiite power is growing, led by Iran.

relation: contains
base: 0.311 naive: 0.864 full: 0.884

Sometimes I rattle off the names of movie stars from
Omaha: Fred Astaire, Henry Fonda, Nick Nolte . . .

relation: place of birth
base: 0.109 naive: 0.605 full: 0.646

Table: Some examples in NYT corpus and the predicted probabilities of
the true relations.
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Conclusion

In this thesis, we

1 propose a single, much simpler and more elegant neural model
that attempts FETC “end-to-end” without post-processing or
ad-hoc features

2 propose a neural model with multi-level attention mechanisms
for relation extraction

3 describe a neural framework for jointly learning heterogeneous
representations from both text information and facts in an
existing knowledge base to facilitate relation extraction
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Q&A

Questions?
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