Neural Fine-Grained Entity Type Classification with Hierarchy-Aware Loss

Peng Xu

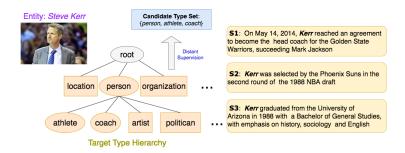
Denilson Barbosa

Department of Computing Science University of Alberta

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで 1/19

The Task: Fine-Grained Entity Type Classification

- Traditional Coarse-Grained Entity Type Classification, as a sub-task of Named Entity Recognition (NER), focuses on a small set of coarse types.
- Fine-Grained Entity Type Classification (FETC) aims at labeling entity mentions in context with one or more specific types organized in a hierarchy.


Figure: Traditional coarse-grained types are colored in black. Fine-grained types are colored in red.

Fine-grained types help in many applications:

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ ○ 三 ○ ○ ○ ○ 3/19

- relation extraction
- question answering
- coreference resolution
- entity linking
- knowledge base completion
- entity recommendation
- and so on...

Characteristics of FETC

- Context dependent labeling
- Hierarchical structure of entity types
- Collapse of the mutual exclusion assumption
- Noise in automatically annotated data

In FETC, types are not mutually exclusive!

It is natural to formulate the task as a multi-label classification problem and most FETC methods adopt this setting. However,

- context dependent labeling \rightarrow assumption that one mention can only have one *type-path* along the hierarchy
- type hierarchy is a tree → each type-path can be uniquely represented by the terminal type (not necessarily a leaf node)

Then, the task can be transformed to predict the terminal type of the *type-path* in the hierarchy, which is a single-label classification problem!

Pros and Cons to Adopt Single Label Setting

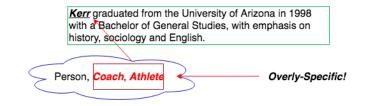
Pros:

- **1** Simpler and more elegant
- 2 Benefit from previous research
- **3** No post-processing needed

Cons:

The upper bounds are no longer 100% (But, is that really important? State-of-the-art methods are nowhere near 80% strict accuracy.)

	FIGER(GOLD)	OntoNotes
# types	113	89
# raw testing mentions	563	8963
% testing mentions with	88.28	94.00
single type-path		


Out-of-context Noise

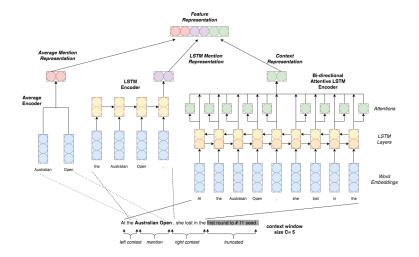
One kind of noise introduced by distant supervision is assigning labels that are *out-of-context*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ (27/19)

Overly-specific Noise

Another source of noise introduced by distant supervision is when the type is *overly-specifc* for the context.

	Attentive	AFET	LNR	A&A
without manual features	×	×	×	1
use attentive neural network	 Image: A set of the set of the	×	×	×
adopt single label setting	×	×	×	×
handle <i>out-of-context</i> noise	×	1	1	1
handle overly-specifc noise	×	1	1	×


- 1 Attentive: Shimaoka et al. (2017)
- 2 AFET: Ren *et al.* (2016a)
- 3 LNR: Ren et al. (2016b)
- A&A: Abhishek and Awekar (2017)

NFETC is a single, much simpler and more elegant neural model that attempts FETC "end-to-end" without post-processing or ad-hoc features.

	Attentive	AFET	LNR	A&A	NFETC
without manual features	×	×	×	1	 Image: A set of the set of the
use attentive neural network	1	×	×	×	 Image: A set of the set of the
adopt single label setting	×	×	×	×	 Image: A set of the set of the
handle <i>out-of-context</i> noise	×	1	1	1	1
handle <i>overly-specifc</i> noise	×	1	1	×	 Image: A set of the set of the

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで 10/19

Neural Architecture

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = の < ○ 11/19

Traditional cross-entropy loss:

$$J(\theta) = -\frac{1}{N} \sum_{i=1}^{N} \log(\hat{p}(y_i)), \qquad (1)$$

which can't handle data with multi *type-paths* (that is, with *out-of-context* noise). A simple yet effective variant of the cross-entropy loss:

$$J(\theta) = -\frac{1}{N} \sum_{i=1}^{N} \log(\hat{p}(y_i^*)),$$
 (2)

where $y_i^* = \arg \max_{y \in \mathcal{Y}_i} \hat{p}(y)$ and \mathcal{Y}_i is the labelled type set.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ∽ ○ ○ 12/19

Hierarchical Loss Normalization: Intuition

Based on the intuition, we adjust the estimated probability to:

$$p^*(\hat{y}) = p(\hat{y}) + \beta * \sum_{t \in \Gamma} p(t)$$
(3)

where Γ is the set of ancestor types along the *type-path* of \hat{y} , β is a hyperparameter. In this way, the model will:

- get less penalty when it predicts the actual type for data with *overly-specific* noise
- 2 prefer generic types unless there is a strong indicator for a more specific type in the context

¹Hierarchical loss function (Cai and Hofmann, 2004) was originally introduced in the context of document categorization with SVM. However, they assume that weights to control the hierarchical loss can be solicited from domain experts which is inapplicable for FETC. $\Box \rightarrow \langle \Box \rangle \rightarrow \langle \Box \land \land \rightarrow \langle \Box \land \land \rightarrow \langle \Box \land \land \rightarrow \langle \Box \land$

Datasets: FIGER(GOLD) & OntoNotes

	FIGER(GOLD)	OntoNotes
# types	113	89
# raw training mentions	2009898	253241
# raw testing mentions	563	8963
% filtered training mentions	64.46	73.13
% filtered testing mentions	88.28	94.00
Max hierarchy depth	2	3

Evaluation Metrics: Strict Accuracy, Macro F1 and Micro F1

Results

		FIGER(GOLD)			OntoNotes	
Model	Strict Acc.	Macro F1	Micro F1	Strict Acc.	Macro F1	Micro F1
Attentive	59.68	78.97	75.36	51.74	70.98	64.91
AFET	53.3	69.3	66.4	55.1	71.1	64.7
LNR+FIGER	59.9	76.3	74.9	57.2	71.5	66.1
A&A	65.8	81.2	77.4	52.2	68.5	63.3
NFETC(f)	57.9 ± 1.3	78.4 ± 0.8	75.0 ± 0.7	54.4 ± 0.3	71.5 ± 0.4	64.9 ± 0.3
NFETC-hier(f)	68.0 ± 0.8	81.4 ± 0.8	77.9 ± 0.7	59.6 ± 0.2	76.1 ± 0.2	69.7 ± 0.2
NFETC(r)	56.2 ± 1.0	77.2 ± 0.9	74.3 ± 1.1	54.8 ± 0.4	71.8 ± 0.4	65.0 ± 0.4
NFETC-hier(r)	68.9 ± 0.6	81.9 ± 0.7	79.0 ± 0.7	60.2 ± 0.2	$\textbf{76.4} \pm \textbf{0.1}$	70.2 ± 0.2

Variants of our proposed model:

- NFETC(f): basic model trained on data with single type-path
- NFETC-hier(f): with hierarchical loss normalization trained on data with single type-path
- NFETC(r): with variant of cross-entropy trained on raw data
- NFETC-hier(f): with variant of cross-entropy and hierarchical loss normalization trained on raw data

Test Sentence	Ground Truth	Prediction (w/o HLN)	Prediction (w HLN)
S1: Hopkins said four fellow elections is curious , considering the	Person	Politician	Person
S2: for WiFi communications across all the SD cards.	Product	Software	Product

Test Sentence	Ground Truth	Prediction (original CE)	Prediction (improved CE)
S3: ASC Director Melvin Taing said	Organization	Title	Organization
that because the commission is			

Test Sentence	Ground Truth	Failed Prediction
S4: A handful of professors in the UW De-	Educational Institution	Organization
partment of Chemistry		
S5: Work needs to be done and, in Wash-	Province	City
ington state,		

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ = うへで 17/19

Conclusion

- Studied two kinds of noise, namely *out-of-context* noise and *overly-specific* noise.
- Propose a neural model which jointly learns representations for entity mentions and their context.
- A variant of cross-entropy loss function was used to handle out-of-context noise.
- Hierarchical loss normalization was introduced to alleviate the negative effect of *overly-specific* noise.
- Outperform previous state-of-the-art methods significantly.

Questions?

Homepage

Code

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ≧ ∽ � � 19/19