The goal in the task of Relation Extraction is to predict a KB relation that holds for a pair of entities given a set of sentences mentioning them (or NA if no such relation exists). The input is a KB Ψ with relation set R_{Ψ}, a set of relations of interest $R_\subseteq R_{\Psi}$, and an automatically labelled training dataset \mathcal{D} obtained via distant supervision. Given a sentence mentioning entities h,t, the output is a relation r in R that holds for h,t or the catch-all relation NA if no such r exists. Formally, a labeled dataset for relation extraction consists of fact triples $\{(h_i, r_i, t_i)\}_{i=1}^{N}$ and a multi-set of extracted sentences for each triple $\{S_j\}_{j=1}^{N}$, such that each sentence $s \in S_i$ mentions both the head entity h_i and the tail entity t_i.

Problem Statement. Given an entity pair (h,t) and a set of sentences \mathcal{S} mentioning them, the RE task is to estimate the probability of each relation in $R \cup \{NA\}$. Formally, for each relation r, we want to predict $P(r \mid h,t,\mathcal{S})$.

HRERE (Heterogeneous REpresentations for neural Relation Extraction)

HRERE is a neural relation extraction framework which learns language and knowledge jointly. HRERE’s backbone is a bi-directional LSTM network with multiple levels of attention to learn representations of text expressing relations. The knowledge representation machinery, borrowed from ComplEx (Trouillon et al., 2016), judges the language model to agree with facts in the knowledge base. Joint learning is guided by three loss functions: one for the language representation, another for the knowledge representation, and a third one to ensure these representations do not diverge.

$$J_L = -\frac{1}{N} \sum_{i=1}^{N} \log p(r_i \mid S_i; \Theta^{(L)})$$

$$J_K = -\frac{1}{N} \sum_{i=1}^{N} \log p(r_i \mid h_i, t_i; \Theta^{(K)})$$

$$J_D = -\frac{1}{N} \sum_{i=1}^{N} \log p(r^* \mid S_i; \Theta^{(B)})$$

$$\min \mathcal{J} = J_L + J_K + J_D + \lambda \Vert \Theta \Vert^2$$

where $r^*_i = \arg \max_{r \in \mathcal{R}_\Psi} p(r \mid h_i, t_i; \Theta^{(B)})$ and $\Theta = \Theta^{(L)} \cup \Theta^{(K)}$

Experiment

We study three variants of our framework:
- HRERE-base: basic neural model with local loss J_L only;
- HRERE-naive: neural model with both local loss J_L and global loss J_D but without the dissimilarities J_K;
- HRERE-full: neural model with both local and global loss along with their dissimilarities.

<table>
<thead>
<tr>
<th>Method</th>
<th>P@10%</th>
<th>P@30%</th>
<th>P@50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weston</td>
<td>79.3</td>
<td>68.6</td>
<td>60.9</td>
</tr>
<tr>
<td>HRERE-base</td>
<td>81.8</td>
<td>70.1</td>
<td>60.7</td>
</tr>
<tr>
<td>HRERE-naive</td>
<td>83.6</td>
<td>74.4</td>
<td>65.7</td>
</tr>
<tr>
<td>HRERE-full</td>
<td>86.1</td>
<td>76.6</td>
<td>68.1</td>
</tr>
</tbody>
</table>

References

code: github.com/billy-inn/HRERE