
Investigation on Deep Reinforcement Learning
Methods for Classical Control Problems

Peng Xu
Department of Computer Science

University of Alberta
pxu4@ualberta.ca

Abstract

Through the study in CMPUT 609, I build a solid foundation and comprehensive
overview of reinforcement learning. However, we didn’t explore too much deeper
into the recent advances in the research of reinforcement learning, such as deep
reinforcement learning. In this paper, I explore and implement several popular
deep reinforcement learning methods along with cross-entroy method. In addition,
I apply these algorithms to a classical control problem, i.e. cart-pole problem and
its variations to compare their performance. Due to the limited time, I do not
tune the parameters carefully enough which may not reveal some algorithm’s full
power though. We can still get a overall impression about how these algorithms
work in practice.

1 Introduction

Throughout the course, we investigate on various methods which focus on the use of value functions
to organize and structure the search for good policies, including Dynamic Programming, Monte
Carlo methods and TD methods. Furthermore, we explore a lot about linear value function approx-
imators and the corresponding feature construction methods, such as tile coding. During the study
of these methods, we form a good overview of reinforcement learning and understand three basic
questions about reinforcement learning (what, how and why). In addition, we can solve some prac-
tical problems by combining these methods effectively, including one classical control problem, i.e.
cart-pole problem. In this paper, I’ll focus on the solutions of this problem and its variations, but use
some newly emerging methods which are entitled with “Deep Reinforcement Learning”.

With the huge success of DeepMind, deep reinforcement learning methods become more and more
popular. But what is deep reinforcement learning at first? In general, they’re just reinforcement
learning methods using nonlinear function approximatiors which are neural networks commonly.
And usually, they update their parameters with stochastic gradients. Extended from what we learned
from the course, we can use neural networks to learn a value function, such as action-value function
Q, which leads to deep Q-learning network (DQN) naturally [2]. Furthermore, we can also learn
the policy function π(a|s) directly which leads to policy gradient methods. Besides methods using
SGD, I also implement a derivative free optimization approach called “cross-entropy method” which
also optimizes the policy directly and perform amazingly well in quite a lot tasks [4].

The outline of this paper is as follows. Section 2 describes the cart-pole problem and one of its
varations, i.e. multi-pole cart-pole problem. Section 3 introduces the methods I investigate in this
paper, including cross-entropy method, policy gradient methods and deep Q-learning network. Sec-
tion 4 gives the details and results of experiments I’ve done so far along with my understanding and
analysis. Finally I summarize my work and potential further work in section 5.

1

2 Cart-pole Problems

The prototypical control problem that has been used as benchmark for reinforcement learning is
cart-pole [6] (also knonw as pole balancing, broom balancer, or inverted pendulum problem). The
problem involves balancing a pole hinged to a cart which is on a finite length track by exerting forces
either left or right on the cart, Figure 1a.

Figure 1: Cart-Pole Problems

An interesting and considerably more challenging of the cart-pole problem involves balancing more
than one pole on the same cart, a two pole example is shown in Figure 1b. As long as the poles
are of different lengths they will react differently to a force applied to the cart and can therefore be
balanced simultaneously.

The final variation of the cart-pole problem considered a jointed pole, shown in Figure 1c. As with
the multiple pole problem, as long as the lengths and therefore the natural frequencies of the poles
are sufficiently different it was possible to balance the system.

3 Algorithms

3.1 Parameterized Policies

Before I introduce the algorithms I use, let’s begin with the concept of parameterized policies which
are quite different from the policies we learned from the course. Instead of consulting a value func-
tion, parameterized policies can select actions themselves. Formally, they are a family of policies
indexed by parameter vector θ ∈ Rd. Thus we write π(a|s,θ) = Pr{At = a|St = s,θt = θ} for
the probability that action a is taken at time t given that the agent is in state s at time t with weight
vector θ. They’re analogous to classification or regression with input s, output a, e.g. for neural
network stochastic policies.

3.2 Cross-Entropy Method (CEM)

I start with a simple but powerful method which is called Cross-Entropy method. Actually, CEM
is a evolutionary algorithm without using neural networks and stochastic gradient descent. It just
ignores all other information other than rewards R collected during episode. Its objective function
can be seen as:

maxE[R|π(·,θ)]

The pseudo-code is shown as follows in Figure 2. In practice, this simple method works amazingly
even embarrassingly well, for that it outperforms many complicated algorithms designed for rein-
forcement learning tasks. Actually, it works quite good in my experiments without too much efforts
to tune the hyperparameters.

In implementation, the policy function is simply a linear function of states.

2

Figure 2: Cross-Entropy Method Algorithm

3.3 Policy Gradient Methods

We consider methods for learning the policy weights based on the gradient of some performance
measure η(θ) with respect to the policy weights. The policy weights are updated with the following
formula:

θt+1 = θt + α∇η(θt)

All methods that follow this general schema we call policy gradient methods, whether or not they
also learn an approximate value function.

The intuition of policy gradient methods is to make the good (maybe lucky) actions more probable
after collecting a bunch of trajectories. And push the actions towards good action further and further.
The policy gradient theorem gives a mathematical explanation for it, but I’ll not give the details here.
If interested, the proof can be found in the textbook.

3.3.1 REINFORCE with a Baseline

REINFORCE [3] is a policy gradient method based on Monte Carlo algorithm. The update formula
for this algorithm is as follows:

θt+1 = θt + αγt (Gt − b(St))∇θ log π(At|St,θ).

In implementation, the policy function is approximated by a neural network with one hidden layer
and 20 hidden units. Tanh function is used as the activation function and the baseline function b(St)
is the averge rewards.

3.3.2 Actor-Critic Methods

Methods that learn approximations to both policy and value functions are often called actor-critic
methods [1], where ‘actor’ is a reference to the learned policy, and ‘critic’ refers to the learned
value function, usually a state-value function. One-step actor-critic methods replace the full return
of REINFORCE with the one-step return as follows:

θt+1 = θt + α (Gt + γv(St+1,w)− v(St,w))∇θ log π(At|St,θ).

In implementation, the policy function and the value function are both approximated by a neural
network with one hidden layer and 20 hidden units. Also, Tanh function is used as the activation
function.

3.4 Deep Q-Learning Network (DQN)

DQN is a natural extention to the Q-learning we learned in the course. The update formula for
action-value function is as follows:

3

Q(St, At) = Q(St, At) + α [Rt+1 + γQ(St+1, At+1)−Q(St, At)] .

The only difference is that DQN use a deep neural network to approximate the action-value function
Q. In addition, DeepMind introduces various techniques to improve the performance of DQN, such
as memory replay and double DQN [5].

In implementation, the action-value function Q is approximated by a neural network with three
hidden layers and each with 128 hidden units. Rectifier (ReLU) function is used as the activation
function and I also use the technique of memory replay in my implementation.

4 Experiments

4.1 Settings

For the environments, I use the gym package developed by OpenAI. However, there is only classical
cart-pole environment. So I develop a new environment for multi-pole cart-pole under the framework
of gym. The neural networks are implemented by tensorflow which is developed by Google.

To compare the performane of different algorithms, I run each algorithm 50 times independently. In
each run, there are 1000 episodes in total.

4.2 Results

(a) classical cart-pole (b) multiple-pole cart-pole

Figure 3: Average Returns over Episodes: Cross-Entropy Method

The reason why there is a periodical spikes in the Figure 3 is that CEM need to collect the returns R
using sampled parameters for a certain batch size and then evaluated on the actual learned parame-
ters. As a result, the spikes indicates the real performance of the algorithm and the other episodes
can be seen as training episodes.

(a) classical cart-pole (b) multiple-pole cart-pole

Figure 4: Average Returns over Episodes: REINFORCE

4

(a) classical cart-pole (b) multiple-pole cart-pole

Figure 5: Average Returns over Episodes: Actor-Critic

(a) classical cart-pole (b) multiple-pole cart-pole

Figure 6: Average Returns over Episodes: Deep Q-Learning Network

From Figure 3-6, we can see that there are not too much difference between cart-pole and multi-
pole cart-pole problems. The reason may be that the difficulty between the two problems is not that
large. Just as the previous research show, CEM performs amazingly well in these problems from no
matter the averged returns or the stability of the algorithms. DQN also perform quite well, but it’s
not that stable like CEM. In addition, training a deep neural networks is quite time-consuming. I
spent several days to complete the 50 runs of DQN, but it only took several minutes to complete the
experiments of CEM. Policy gradient methods perform relatively bad in these tasks, and it seems that
there is no too much difference in performance between REINFORCE and Actor-Critic. However,
their returns are steadily increasing when we have more episodes and I think they can achieve better
results with more time.

One thing to be noted is that I didn’t spend too much time to tune the parameters and architectures of
the neural networks for the deep reinforcement learning methods. As a result, the performances here
are just the first impression of how these algorithm behaves and may not reveal their full poentials.

5 Conclusion and Further Work

In this paper, I briefly describe the cart-pole problems and its variations. Then, I introduce three
reinforment learning algorithms along with CEM algorithm and apply them to the cart-poles prob-
lems. When implementing these algorithms and doing the experiments, I have a basic understanding
of these algorithms and how they work. By comparing their performances, I learn more about how
they behave in the practical problems. In the future, I’ll apply these algorithms to more tasks and
gain deeper understanding of these algorithms. In addition, I plan to write a tutorial covering basic
deep reinforcement learning algorithms and their applications on my own blog.

5

6 Acknowledgements

I would like to express my appreciation to professor Richard Sutton. Thanks for his time and efforts
on guiding the whole process of my project.

References

[1] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy P Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforce-
ment learning. ICML, 2016.

[2] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[3] Richard S Sutton, David A McAllester, Satinder P Singh, Yishay Mansour, et al. Policy gradient
methods for reinforcement learning with function approximation. NIPS, 99(1057–1063), 1999.

[4] István Szita and András Lörincz. Learning tetris using the noisy cross-entropy method. Neural
computation, 18(12):2936–2941, 2006.

[5] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning. AAAI, 2015.

[6] Alexis P Wieland. Evolving neural network controllers for unstable systems. Neural Networks,
2:667–673, 1991.

6

	Introduction
	Cart-pole Problems
	Algorithms
	Parameterized Policies
	Cross-Entropy Method (CEM)
	Policy Gradient Methods
	REINFORCE with a Baseline
	Actor-Critic Methods

	Deep Q-Learning Network (DQN)

	Experiments
	Settings
	Results

	Conclusion and Further Work
	Acknowledgements

