
Measure Search Relevance for Home Depot Products

Peng Xu
Department of Computing Science

pxu4@ualberta.ca

ABSTRACT
In this project, the task is to measure the relevance between
products and search terms. This task can be split into two
stages. The first stage is to extract effective features from
the available data, namely feature extraction. In this stage,
I explore different techniques in both information retrieval
and natural language processing to measure relevance from
different aspects. The second stage is to learn from the
features and predict the relevance between search queries
and products. In this stage, the task can be formulated
as a regression problem. I try different ensemble methods
using the features extracted in the first stage and use cross-
validation to choose best parameters for the models. I tried
various experiments to improve the performance on the test
data, and finally I got the root mean squared error (RMSE)
of 0.46248 and ranked in top 10% out of more than two
thousand teams.

Keywords
Information Retrieval, Natural Language Processing, Ma-
chine Learning

1. INTRODUCTION

1.1 Motivation
Measure relevance between search queries and documents

is an important issue in information retrieval. Inspired by
the Kaggle comeptition ”Home Depot Product Search Rev-
elane”1, we will focus on measuring relevance between prod-
ucts and real customer search terms from Home Depot’s
website in this project.

Shoppers rely on Home Depot’s product authority to find
and buy the latest products and to get timely solutions to
their home improvement needs. Speed, accuracy and deliv-
ering a frictionless customer experience are essential. In this

1https://www.kaggle.com/c/home-depot-product-search-
relevance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WOODSTOCK ’97 El Paso, Texas USA
c© 2016 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

competition, the goal is to help improve the customers’ shop-
ping experience by developing a model that can accurately
predict the relevance of search results.

Search relevancy is an implicit measure Home Depot uses
to gauge how quickly they can get customers to the right
products. Currently, human raters evaluate the impact of
potential changes to their search algorithms, which is a slow
and subjective process. By removing or minimizing human
input in search relevance evaluation, Home Depot hopes to
increase the number of iterations their team can perform on
the current search algorithms.

1.2 Task Definition
In this competition, the data set contains a number of

products and real customer search terms from Home De-
pot’s website. The challenge is to predict a relevance score
for the provided combinations of search terms and products.
To create the ground truth labels, Home Depot has crowd-
sourced the search/product pairs to multiple human raters.
The task is to predict the relevance for each pair listed in
the test set.

The results are evaluated on the root mean squared error
(RMSE):

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2

where yi denotes the labeled relevance and ŷi denotes the
predicted relevance.

The task can be divided into two stages. The first stage is
to extract effective features from the available data, namely
feature extraction. In this stage, I explore different tech-
niques in both information retrieval and natural language
processing to measure relevance from different aspects. The
second stage is to learn from the features and predict the rel-
evance between search queries and products. In this stage,
the task can be treated simply as a traditional regression
problem. In this case, I try different ensemble methods us-
ing the features extracted in the first stage and use cross-
validation to choose best parameters for the models.

The outline of this paper is as follows. I introduce some
related work in section 2. In section 3, I describe how I
preprocess the data. In section 4, the methods of feature
extraction are illurstrated. In section 5, the learning models
used in this project are introduced. In section 6, it shows
the details about experiments and the final results along
with the analysis on them. Finally I summarize our work
and potential further work in section 7.

2. RELATED WORK
Latent semantic indexing (LSI), query expansion and sta-

tistical language models are all studied a lot in the area
of information retrevial. They’re used to address different
problems or different aspects of an problem. In my project,
I combine all these techniques together to achieve better
performance to predict the relevance between products and
search queries.

2.1 Latent Semantic Indexing
Dumais (1993) [7] and Dumais (1995) [4] describe exper-

iments on TREC benchmarks giving evidence that at least
on some benchmarks, LSI can produce better precision and
recall than standard vector-space retrieval. Schütze and Sil-
verstein (1997) [32] evaluate LSI and truncated representa-
tions of centroids for efficient K-means clustering. Bast and
Majumdar (2005) [2] detail the role of the reduced dimen-
sion k in LSI and how different pairs of terms get coalesced
together at differing values of k. Applications of LSI to cross-
language information retrieval (where documents in two or
more different languages are indexed, and a query posed in
one language is expected to retrieve documents in other lan-
guages) are developed in Berry and Young (1995) [5] and
Littman et al. (1998) [21]. LSI (referred to as LSA in more
gen- eral settings) has been applied to host of other prob-
lems in computer science ranging from memory modeling to
computer vision.

Hofmann (1999a;b) [13, 12] provides an initial probabilis-
tic extension of the basic latent semantic indexing technique.
A more satisfactory formal basis for a probabilistic latent
variable model for dimensionality reduction is the Latent
Dirichlet Allocation (LDA) model (Blei et al. 2003) [6],
which is generative and assigns probabilities to documents
outside of the training set.

2.2 Query Expansion
Different approaches have been proposed for selecting ex-

pansion terms. Pseudo-relevance feedback (PRF) assumes
that the top-ranked documents returned for the initial query
are relevant, and uses a sub set of the terms extracted from
those documents for expansion. PRF has been proven to be
effective in improving retrieval performance [20].

Corpus-specific approaches analyze the content of the whole
document collection, and then generate correlation between
each pair of terms by co-occurrence [24], mutual informa-
tion [14], etc. Mutual information (MI) is a good measure
to assess how much two terms are related, by analyzing the
entire col- lection in order to extract the association between
terms. For each query term, every term that has a high mu-
tual information score with it is used to expand the user
query.

Many approaches exploit knowledge bases or thesauruses
for query expansion, among them: WordNet [44], UMLS
Meta thesaurus [45], Wikipedia [40], etc. The nature of
these resources varies: linguistic like WordNet, domain spe-
cific like UMLS in the medical domain, or knowledge about
named entities like Wikipedia.

Other approaches like semantic vectors and neural proba-
bilistic language models, propose a rich term representation
in order to capture the similarity between terms. In these
approaches, a term is represented by a mathematical object
in a high dimensional semantic space which is equipped with
a metric. The metric can naturally encode similarities be-

tween the corresponding terms. A typical instantiation of
these approaches is to represent each term by a vector and
use a cosine or distance between term vectors in order to
measure term similarity [3, 33, 38].

2.3 Statistical Language Models
Statistical language models have recently been success-

fully applied to many information retrieval problems [41]. A
great deal of recent work has shown that statistical language
models not only lead to superior empirical performance, but
also facilitate parameter tuning and open up possibilities
for modeling nontraditional retrieval problems. In general,
statistical language models provide a principled way of mod-
eling various kinds of retrieval problems.

The field has progressed in two different ways. On the one
hand, theoretical models have been proposed often to model
relevance through inferences; representative models include
the logic models [11, 37, 39] and the inference network model
[35]. However, these models, while theoretically interesting,
have not been able to directly lead to empirically effective
models, even though heuristic instantiations of them can be
effective. On the other hand, there have been many empiri-
cal studies of models, including many variants of the vector
space model [29, 30, 31, 34] and probabilistic models [10,
18, 25, 26, 36, 35]. The vector-space model with heuristic
TF-IDF weighting and document length normalization has
traditionally been one of the most effective retrieval models,
and it remains quite competitive as a state of the art retrieval
model. The popular BM25 (Okapi) retrieval function is very
similar to a TF-IDF vector space retrieval function, but it is
motivated and derived from the 2-Poisson probabilistic re-
trieval model [27, 28] with heuristic approximations. BM25
is one of the most robust and effective retrieval functions.
Another effective retrieval model is divergence from random-
ness which is based on probabilistic justifications for several
term weighting components [1].

While both vector space models and BM25 rely on heuris-
tic design of retrieval functions, an interesting class of prob-
abilistic models called language modeling approaches to re-
trieval have led to effective retrieval functions without much
heuristic design. In particular, the query likelihood retrieval
function [25] with Dirichlet prior smoothing has compara-
ble performance to the most effective TF-IDF weighting re-
trieval functions including BM25 [8]. Due to their good em-
pirical performance and great potential of leveraging statis-
tical estimation methods, the language modeling approaches
have been attracting much attention since Ponte and Croft?s
pioneering paper published in ACM SIGIR 1998 [25]. Many
variations of the basic language mod- eling approach have
since been proposed and studied, and language models have
now been applied to multiple retrieval tasks such as cross-
lingual retrieval [22], distributed IR [17, 23], expert finding
[9], passage retrieval [22], web search [17, 23], genomics re-
trieval [42], topic tracking [15, 19, 16], and subtopic retrieval
[43].

3. PREPROCESSING
The given information about each product is somewhat

dirty and poor-structured. As a result, it’s necessary to
clean and convert the data into the desired format. In the
dataset, each product has the following information:

• product uid: Unique identifier of each product.

• product title: Title of each product.

• product description: A text description of each prod-
uct.

• attributes (optional): Provide extended informa-
tion about a subset of the products. Not every product
will have attributes.

In order to clean the text information, I conduct a series of
basic operations on the data, including parsing, stemming,
removing html content and punctuations, correcting com-
mon spelling mistakes and so on. Furthermore, I find that
most attributes are extracted from the product description
except one attribute which denotes brand of the product,
after exploring the attributes information. So I extract this
attribute and denote it as product brand.

Apart from the basic operations described above, I use
three different schemes to handle the text information in
the data :

• D1: Just apply basic operations on the text informa-
tion.

• D2: Apply basic operations and remove the common
stopwords.

• D3: Apply basic operations and remove the stopwords
and numbers.

These three corpora may reflect different aspects of the data,
and I will apply feature extraction and learning models to
these three corpora simultaneously.

4. FEATURE EXTRACTION
Feature extraction may be the most important part in

a machine learning contest. In this section, I make use of
many techniques in both information retrieval and natural
language processing to extract the effective features from
the given corpus.

4.1 Basic Features
First, I extract some basic features for each (product,

search terms) pair, which descibes the size of the text in-
formation and the brand feature:

• len of query: length of the search term

• len of title: length of the title of each product

• len of description: length of the description of each
product

• len of brand: length of the brand of each product

• brand feature: unique identifier for each brand

Then, I calculate the number of common words between
search terms and the text information about the product:

• words in title: common words between search terms
and title of the product

• words in description: common words between search
terms and title of the description

• words in brand: common words between search terms
and title of the brand

One thing to be noted is that the last search term usually
has much more importance than other terms. So here I add
two more features about the last search term:

• last word in title: whether last word in search terms
is in title of the product

• last word in description: whether last word in search
terms is in description of the product

Finally, I also add the ratio of common words in search
terms:

• ratio of title: words in title divided by len of query

• ratio of description: words in description divided
by len of query

• ratio of brand: words in brand divided by len of query

4.2 Correct Search Terms
After looking into the data, I find that there are quite

a lot search terms unseen in the vocabulary of the whole
corpus. The appearances of those words are mainly due to
the spelling mistakes.

In order to reduce the effect of spelling mistakes, I use the
following strategy to correct the unseen search terms. For a
certain unseen search term, I first calculate its edit distance
with the vocubulary of the whole corpus. Edit distance is a
way of quantifying how dissimilar two strings (e.g., words)
are to one another by counting the minimum number of
operations required to transform one string into the other.
Then, I replace the unseen term with the word with minimal
edit distance. If there are multiple words with the same
minimal edit distance, I choose the one with the highest
frequency in the whole corpus.

I also explore some other metrics, like Jaro-Winkler Dis-
tance and Soundex, to correct search terms. But the perfor-
mance of these metrics are not good.

4.3 Latent Semantic Indexing
Latent semantic indexing (LSI) is an indexing and re-

trieval method that uses a mathematical technique called
singular value decomposition (SVD) to identify patterns in
the relationships between the terms and concepts contained
in an unstructured collection of text. LSI is based on the
principle that words that are used in the same contexts tend
to have similar meanings. A key feature of LSI is its abil-
ity to extract the conceptual content of a body of text by
establishing associations between those terms that occur in
similar contexts.

LSI is actually a transformation which applies truncated
SVD to term-document matrices and it transforms such ma-
trices to a “semantic” space of low dimensionality. In partic-
ular, LSA is known to combat the effects of synonymy and
polysemy (both of which roughly mean there are multiple
meanings per word), which cause term-document matrices
to be overly sparse and exhibit poor similarity under mea-
sures such as cosine similarity.

Mathematically, truncated SVD applied to training sam-
ples X produces a low-rank approximation Xk:

X ≈ Xk = UkΣkV
>
k

After this operation, UkΣ>
k is the transformed training set

with k features.

To also transform a test set X, we multiply it with Vk:

X ′ = XVk.

Figure 1: Illustration of low-rank approximation us-
ing the singular value decomposition. The dashed
boxes indicate the matrix entries affected by “zero-
ing out” the smallest singular values.

In this project, I extract two kinds of features from the
corpus using the LSI. First, I apply the LSI on the term-
document matrices of search terms, title, description and
brand seperately and treat the low-rank approximations as
features directly. Second, I combine all the text informa-
tion including title and description together for each prod-
uct as documents and apply LSI on the corresponding term-
document matrices. Then, I transfroms the query to the
semantic space by multiplying Vk as illurstrated above. Fi-
nally, I treat the cosine distance between document vectors
and query vectors as features.

Also, I try latent dirichlet allocation (LDA) on the corpus
and use topic distributions as features. However, the results
show that the features from LDA don’t work on this task,
compared to LSI.

4.4 Query Expansion by Word2Vec
In this project, the queries are just some keywords and

usually too short to describe the information need accu-
rately. Important terms can be missing from the query, lead-
ing to a poor coverage of the relevant documents. To solve
this problem, automatic query expansion techniques lever-
aging on serveral data sources and employ different methods
for find expansion terms.

Recently, several efficient NLP methods, based on Deep
Learning, are proposed to learn high quality vector represen-
tations of terms from a large amount of unstructured text
data with billions of words. This high quality vector repre-
sentation captures a large number of term relationships. In
my project, I investigate these term vector representations
in query expansion.

Learning takes places from the corpus of all the text infor-
mation including title and description. The resulting vectors
carry relationships between terms, such as a city and the
country it belongs to, e.g. France is to Pairs what Germany
is to Berline. Therefore, each term t is represented by a
vector of a predefined dimension vt. The similarity between
two terms t1 and t2 is measured with the normalized cosine
between their two vectors: vt1 and vt2 .

SIM(t1, t2) = c̃os(vt1 , vt2)

where c̃os(vt1 , vt2) ∈ [0, 1] is the normalized cosine between
the two term vectors vt1 and vt2 . Based on this normalized

cosine similarity between terms, we now define the function
that returns the k-most similar terms to a term t, topk(t):

topk : V → 2V

where V is the set of all terms t.
Let q be a user query represented by a bag of terms,

q = [t1, t2, . . . , t|q|]. Each term in the query has a frequency
#(t, q). In order to expand a query q, I follow these steps:

• For each t ∈ q, collect the k-most similar terms to t
using the function topk(t). The expanded query q′ is
defined as follows: q′ = q

⋃
t∈q topk(t).

• The frequency of each t ∈ q still the same in the ex-
panded query q′.

• The frequency of each expansion term t′ ∈ topk(t) in
the expanded query q′ is given as follows:

#(t′, q′) = #(t, q′)× c̃os(vt, vt′).

After query expansion, we can use the expanded queries
to recalculate all the basic features and LSI features, which
are very effective as the experiments show.

4.5 Language Models and Ranking
Statistical language models have recently been success-

fully applied to many information retrieval problems. In
my project, it can be used to calculate a score for relevance
between queries and documents. In addition, based on the
scores, I can also obtain the ranking of a certain document
among all documents. And the relevance score and the rank-
ing can be treated as features in the regression model.

In my project, I use the Indri search engine to calculate
the scores and obtain the corresponding rankings. The In-
dri search engine, developed as part of the Lemur Project, is
designed to be both efficient and effective over a wide range
of collections, especially large, semi-structured text collec-
tions, such as the web. Indri makes use of INQUERY’s un-
derlying inference network retrieval framework, which allows
complex structured queries to be constructed and evaluated.
However, Indri makes use of language modeling probabilities
instead of INQUERY’s tf.idf based probabilities, which pro-
vides increased robustness, as reflected in the Indri query
language.

5. MODELS
In this project, the task can be formulated as a regression

problem essentially. After feature extraction, we need to fit
the training data on a learning model and give predictions
on the test data. Here I explore three different models:

5.1 Support Vector Machine
In machine learning, support vector machines are super-

vised learning models with associated learning algorithms
that analyze data used for classification and regression anal-
ysis. Given a set of training examples, each marked for
belonging to one of two categories, an SVM training algo-
rithm builds a model that assigns new examples into one
category or the other, making it a non-probabilistic binary
linear classifier. An SVM model is a representation of the
examples as points in space, mapped so that the examples of
the separate categories are divided by a clear gap that is as
wide as possible. New examples are then mapped into that

same space and predicted to belong to a category based on
which side of the gap they fall on.

Figure 2: Example of SVM

A version of SVM for regression is called support vector
regression (SVR). The model produced by support vector
classification as described above depends only on a subset
of the training data, because the cost function for building
the model does not care about training points that lie be-
yond the margin. Analogously, the model produced by SVR
depends only on a subset of the training data, because the
cost function for building the model ignores any training
data close to the model prediction.

5.2 Random Forests
Random forests is a notion of the general technique of ran-

dom decision forests that are an ensemble learning method
for classification, regression and other tasks, that operate by
constructing a multitude of decision trees at training time
and outputting the class that is the mode of the classes (clas-
sification) or mean prediction (regression) of the individual
trees. Random decision forests correct for decision trees’
habit of overfitting to their training set.

5.2.1 Tree Bagging
The training algorithm for random forests applies the gen-

eral technique of bootstrap aggregating, or bagging, to tree
learners. Given a training set X = x1, . . . , xn with responses
Y = y1, . . . , yn, bagging repeatedly (B times) selects a ran-
dom sample with replacement of the training set and fits
trees to these samples:

• Sample, with replacement, n training examples from
X,Y ; call these Xb, Yb.

• Train a decision or regression tree fb on Xb, Yb.

After training, predictions for unseen samples x′ can be
made by averaging the predictions from all the individual
regression trees on x′:

f̂ =
1

B

B∑
b=1

f̂b(x
′)

or by taking the majority vote in the case of decision trees.
This bootstrapping procedure leads to better model per-

formance because it decreases the variance of the model,
without increasing the bias. This means that while the pre-
dictions of a single tree are highly sensitive to noise in its
training set, the average of many trees is not, as long as the
trees are not correlated. Simply training many trees on a
single training set would give strongly correlated trees (or
even the same tree many times, if the training algorithm is

deterministic); bootstrap sampling is a way of de-correlating
the trees by showing them different training sets.

The number of samples/trees, B, is a free parameter. Typ-
ically, a few hundred to several thousand trees are used,
depending on the size and nature of the training set. An op-
timal number of trees B can be found using cross-validation,
or by observing the out-of-bag error: the mean prediction
error on each training sample xi, using only the trees that
did not have xi in their bootstrap sample. The training and
test error tend to level off after some number of trees have
been fit.

5.2.2 From Bagging to Random Forests
The above procedure describes the original bagging algo-

rithm for trees. Random forests differ in only one way from
this general scheme: they use a modified tree learning al-
gorithm that selects, at each candidate split in the learning
process, a random subset of the features. This process is
sometimes called ”feature bagging”. The reason for doing
this is the correlation of the trees in an ordinary bootstrap
sample: if one or a few features are very strong predictors
for the response variable (target output), these features will
be selected in many of the B trees, causing them to be-
come correlated. An analysis of how bagging and random
subspace projection contribute to accuracy gains under dif-
ferent conditions is given by Ho.

5.3 Gradient Boosting Trees
Gradient boosting is a machine learning technique for re-

gression and classification problems, which produces a pre-
diction model in the form of an ensemble of weak prediction
models, typically decision trees. It builds the model in a
stage-wise fashion like other boosting methods do, and it
generalizes them by allowing optimization of an arbitrary
differentiable loss function.

Gradient boosting is typically used with decision trees (es-
pecially CART trees) of a fixed size as base learners, namely
gradient boosting trees. In some sense, it’s a generalization
of the tree ensembles and can prevent overfitting effectively.
In practice, it’s extremely powerful and usually can out-
perform many other models if the parameters are selected
properly.

Figure 3: Example of One CART Tree

In my project, I use the XGBoost package in python to
train the gradient boosting trees. XGBoost is an optimized
distributed gradient boosting library designed to be highly
efficient, flexible and portable. It implements machine learn-
ing algorithms under the Gradient Boosting framework. XG-
Boost provides a parallel tree boosting(also known as GBDT,
GBM) that solve many data science problems in a fast and
accurate way.

Figure 4: Example of Tree Ensemble

6. EVALUATION

6.1 Resources
For the implementation, I use python as the programming

language. And the two packages scikit-learn and XGBoost
are heavily used in my project. Support vector regression,
random forest, gradient boosting trees, latent semantic in-
dexing, grid search and cross-validation are all convenient
to implement with the help of these two packages.

6.2 CV Results on Different Feature Sets
In the experiments, I first use cross-validation to test each

features effectiveness on the preprocessed training data D1.
Then, I combine all effective features together and use three
different models to get the final results on test data. Of
course, I also use grid search to select the optimal parameters
for each model.

Table 1 shows the CV results measured by RMSE on dif-
ferent feature sets learned by gradient boosting trees.

Table 1: CV results on different feature sets

Feature Set Baseline F1 F2 F3 F4
RMSE 0.4844 0.4830 0.4799 0.4797 0.4702

How these feature sets are constructed is explained as fol-
lows:

• Baseline: Basic features only.

• F1: Basic features + Basic features based on corrected
search terms.

• F2: Basic features + Basic features based on expanded
search terms.

• F3: Basic features + Language model based relevance
scores & rankings.

• F4: Basic features + Latent semantic indexing fea-
tures.

As the results show, all these extracted features can have
modest improvements on the CV results, but not that sig-
nificant. Among them, the LSI features bring the model the
largest improvement. In order to improve the performance
of the model further, I combine all the feature extraction
methods together and I can get more features. For example,

I can apply LSI on the corrected search terms and the ex-
panded search terms. Also, I can also apply language mod-
els to the corrected search terms and the expanded search
terms.

Table 2 shows the CV results of combined features mea-
sured by RMSE on training data preprocessed by different
strategies by gradient boosting trees.

Table 2: CV results of combined features with dif-
ferent preprocessing strategies

Dataset D1 D2 D3
RMSE 0.4563 0.4589 0.4659

Compared to the results in Table 1, the improvement is
significant over the baseline when we combine all the fea-
tures together. In addition, D1 performs better than D2

and D3. It shows that the stopwords and numbers can also
be meaningful from some aspects and just omit them is not
a wise approach.

Table 3 shows the CV results of combined features mea-
sured by RMSE on training data D1 using different models.

Table 3: CV results of combined features with dif-
ferent preprocessing strategies

Models GBT RF SVR
RMSE 0.4563 0.4640 0.4653

Generally, gradient boosting trees achieve the best per-
formance in the three models. Actually, gradient boosting
trees is the main regression model in my project and I spend
quite a lot time to tune the hyper-parameters of the gradient
boosting trees.

6.3 Final Results on Test Data
I’ve submitted 71 entries on the Kaggle website in total.

The best result is 0.46248 by gradient boosting trees model
with combined features on D1. And I’m ranked in top 10%
out of more than two thousand teams in this competition.
However, there is still a gap between my best results and
the leaders in this competition. The team ranked first has
the results of 0.43083. It’s obvious that more work can be
done to improve my final results.

My origin plan is to ensemble all the models’ results on
data preprocessed by different strategies as the final step of
the project. However, after some attempts, the ensemble
results are not that good. I think the reason may be that
the features I used in the models are too similar and the
emsemble just doesn’t work. I may explore it further after
the project.

7. CONCLUSIONS AND FURTHER WORK
In this project, I explore different techniques in both infor-

mation retrieval and natural language processing to extract
effective features from the corpus, including lantent seman-
tic indexing, word2vec, statistical language models. Also, I
try three different learning models: support vector machine,

random forest and gradient boosting trees and use cross-
validation to select the optimal parameters for each model.
As a result, I get best root mean squared error (RMSE) of
0.46248 and ranked in top 10% out of more than two thou-
sand teams in this competition.

In the future, more teniques can be used to extract more
features. For example, I can try other approaches to expand
the query. Also, I may explore further how to ensemble
different results together to get more improvements on the
final results.

8. ACKNOWLEDGEMENTS
I would like to express our appreciation to Dr. Denilson

Barbosa. Thanks for his time and efforts on guiding the
whole process of my project.

9. REFERENCES
[1] G. Amati and C. J. V. Rijsbergen. Probabilistic

models of information retrieval based on measuring
the divergence from randomness. ACM Trans- actions
on Information System, 20(357–389), 2002.

[2] H. Bast and D. Majumdar. Why spectral retrieval
works. Proceedings of the 28th annual international
ACM SIGIR conference on Research and development
in information retrieval, pages 11–18, 2005.

[3] Y. Bengio, H. Schwenk, J.-S. Senécal, F. Morin, and
J.-L. Gauvain. Neural probabilistic language models.
Innovations in Machine Learning, pages 137–186,
2006.

[4] M. W. Berry, S. T. Dumais, and G. W. O’Brien. Using
linear algebra for intelligent information retrieval.
SIAM review, 37(4):573–595, 1995.

[5] M. W. Berry and P. G. Young. Using latent semantic
indexing for multilanguage information retrieval.
Computers and the Humanities, 29(6):413–429, 1995.

[6] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent
dirichlet allocation. the Journal of machine Learning
research, 3:993–1022, 2003.

[7] S. Dumais. Lsi meets trec: A status report.
Proceedings of the first Text REtrieval Conference,
TREC1, pages 137–152, 1993.

[8] H. Fang, T. Tao, and C. Zhai. A formal study of
information retrieval heuristics. Proceedings of the
27th annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 49–56, 2004.

[9] H. Fang and C. Zhai. Probabilistic models for expert
finding. Proceedings of ECIR, 2007.

[10] N. Fuhr. Probabilistic models in information retrieval.
The Computer Journal, 35(3):243–255, 1992.

[11] N. Fuhr. Language models and uncertain inference in
information retrieval. Proceedings of the Language
Modeling and IR workshop, pages 6–11, 2001.

[12] T. Hofmann. Probabilistic latent semantic analysis.
Proceedings of the Fifteenth conference on Uncertainty
in artificial intelligence, pages 289–296, 1999.

[13] T. Hofmann. Probabilistic latent semantic indexing.
Proceedings of the 22nd annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 50–57, 1999.

[14] J. Hu, W. Deng, and J. Guo. Improving retrieval
performance by global analysis. Pattern Recognition,
2006. ICPR 2006., 2:703–706, 2006.

[15] H. Jin, R. Schwartz, S. Sista, and F. Walls. Topic
tracking for radio, tv broadcast and newswire.
Proceedings of DARPA Broadcast News Workshop,
pages 199–204, 1999.

[16] W. Kraaij and M. Spitters. Language models for topic
tracking. Language Modeling for Information
Retrieval, pages 95–123, 2003.

[17] W. Kraaij, T. Westerveld, and D. Hiemstra. The
importance of prior probabilities for entry page search.
Proceedings of the 25th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 27–34, 2002.

[18] J. Lafferty and C. Zhai. Probabilistic relevance models
based on document and query generation. Language
modeling for information retrieval, pages 1–10, 2003.

[19] V. Lavrenko, J. Allan, E. DeGuzman, D. LaFlamme,
V. Pollard, and S. Thomas. Relevance models for topic
detection and tracking. Proceedings of the second
international conference on Human Language
Technology Research, pages 115–121, 2002.

[20] V. Lavrenko and W. B. Croft. Relevance based
language models. Proceedings of the 24th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 120–127,
2001.

[21] M. L. Littman, S. T. Dumais, and T. K. Landauer.
Automatic cross-language information retrieval using
latent semantic indexing. Cross-language information
retrieval, pages 51–62, 1998.

[22] X. Liu and W. B. Croft. Passage retrieval based on
language models. Proceedings of the eleventh
international conference on Information and
knowledge management, pages 375–382, 2002.

[23] P. Ogilvie and J. P. Callan. Experiments using the
lemur toolkit. TREC, 10:103–108, 2001.

[24] H. J. Peat and P. Willett. The limitations of term
co-occurrence data for query expansion in document
retrieval systems. Journal of the american society for
information science, 42(5):378, 1991.

[25] J. M. Ponte and W. B. Croft. A language modeling
approach to information retrieval. Proceedings of the
21st annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 275–281, 1998.

[26] S. E. Robertson and K. S. Jones. Relevance weighting
of search terms. Journal of the American Society for
Information science, 27(3):129–146, 1976.

[27] S. E. Robertson and S. Walker. Some simple effective
approximations to the 2-poisson model for
probabilistic weighted retrieval. Proceedings of the
17th annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 232–241, 1994.

[28] S. E. Robertson, S. Walker, S. Jones, M. M.
Hancock-Beaulieu, M. Gatford, et al. Okapi at trec-3.
NIST SPECIAL PUBLICATION SP, 109:109, 1995.

[29] G. Salton. Automatic text processing: The
transformation, analysis, and retrieval of information
by computer. Reading: Addison-Wesley, 1989.

[30] G. Salton and M. J. McGill. Introduction to modern
information retrieval. McGraw-Hill, Inc., 1986.

[31] G. Salton, C.-S. Yang, and C. T. Yu. A theory of term
importance in automatic text analysis. Journal of the
American society for Information Science,
26(1):33–44, 1975.

[32] H. Schütze and C. Silverstein. Projections for efficient
document clustering. ACM SIGIR Forum,
31(SI):74–81, 1997.

[33] M. Serizawa and I. Kobayashi. A study on query
expansion based on topic distributions of retrieved
documents. Computational Linguistics and Intelligent
Text Processing, pages 369–379, 2013.

[34] A. Singhal, C. Buckley, and M. Mitra. Pivoted
document length normalization. Proceedings of the
19th annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 21–29, 1996.

[35] H. Turtle and W. B. Croft. Evaluation of an inference
network-based retrieval model. ACM Transactions on
Information Systems (TOIS), 9(3):187–222, 1991.

[36] C. J. van Rijsbergen. A theoretical basis for the use of
co-occurrence data in information retrieval. Journal of
documentation, 33(2):106–119, 1977.

[37] C. J. Van Rijsbergen. A non-classical logic for
information retrieval. The computer journal,
29(6):481–485, 1986.

[38] D. Widdows and T. Cohen. The semantic vectors
package: New algorithms and public tools for
distributional semantics. Semantic Computing (ICSC),
(9–15), 2010.

[39] S. K. M. Wong and Y. Y. Yao. On modeling
information retrieval with probabilistic inference.
ACM Transactions on Information Systems (TOIS),
13(1):38–68, 1995.

[40] Y. Xu, G. J. Jones, and B. Wang. Query dependent
pseudo-relevance feedback based on wikipedia.
Proceedings of the 32nd international ACM SIGIR
conference on Research and development in
information retrieval, pages 59–66, 2009.

[41] C. Zhai. Statistical language models for information
retrieval. Synthesis Lectures on Human Language
Technologies, 1(1):1–141, 2008.

[42] C. Zhai, T. Tao, H. Fang, and Z. Shang. Improving
the robustness of language models-uiuc trec 2003
robust and genomics experiments. TREC, pages
667–672, 2003.

[43] C. X. Zhai, W. W. Cohen, and J. Lafferty. Beyond
independent relevance: methods and evaluation
metrics for subtopic retrieval. Proceedings of the 26th
annual international ACM SIGIR conference on
Research and development in informaion retrieval,
pages 10–17, 2003.

[44] J. Zhang, B. Deng, and X. Li. Concept based query
expansion using wordnet. Proceedings of the 2009
international e-conference on advanced science and
technology, pages 52–55, 2009.

[45] W. Zhu, X. Xu, X. Hu, I.-Y. Song, and R. B. Allen.
Using umls-based re-weighting terms as a query
expansion strategy. GrC, pages 217–222, 2006.

